GreenLabUC

Gestión y Política Ambiental DICTUC S.A.

GreenLabUC

Gestión y Política Ambiental DICTUC S.A.

Desarrollo de Modelo Genérico para Evaluación de Planes de Prevención y de Descontaminación Ambiental para Aire

Estudio solicitado por El Ministerio del Medio Ambiente

INFORME FINAL

Santiago, 10 de Octubre de 2013

Equipo de Trabajo

Luis Abdón Cifuentes Lira lac@ing.puc.cl

Camila Cabrera ccabrera@greenlabuc.cl

Nicolás Borchers Arriagada nicolasborchers@greenlabuc.cl

Rodrigo Dittborn Cabello rodrigodittborn@greenlabuc.cl

Tabla de Contenidos

TΑ	BLA DE CON	ITENIDOS	
LIS	TA DE TABL	AS	I
LIS	TA DE FIGU	RAS	۱۱ا
Δ	'RÓNIMOS V	ABREVIATURAS	
1.		DENTES	
2.	OBJETIV	OS DEL ESTUDIO	2
	2.1 OBJE	ETIVO GENERAL	
	2.2 OBJE	ETIVOS ESPECÍFICOS	
3.	PRODUC	TOS DE LA PRESENTE ENTREGA	
4.		N BIBLIOGRÁFICA	
		ODOLOGÍAS DE EVALUACIÓN	
		DIDAS DE ABATIMIENTO	
	4.2.1 4.2.2	Nacional Planes Internacionales	
		DELOS INTERNACIONALES	
	4.3 IVIOI	AirControlNET	
	4.3.1 4.3.2	CoST	
	4.3.3	GAINS	
5.		S INCLUIDAS EN EL MODELO	
٠.			
		LISIS DE TIPOLOGÍAS DE MEDIDAS	
	5.1.1	Estimación de emisiones	
	5.1.2	Definición de tipología de medida	
		ADO DE MEDIDAS	
	5.2.1	Fuentes Fijas	
	5.2.2 5.2.3	Fuentes Fugitivas	
		Fuentes Móviles ADO DE PROGRAMAS COMPLEMENTARIOS	
_			
6.		CIÓN DE MEDIDAS, ESTABLECIMIENTO DE DRIVERS Y ORDENAMIENTO SEGÚN COSTO MEDIO.	
	6.1 ORD	ENAMIENTO SEGÚN COSTO MEDIO	64
7.	REFEREN	ICIAS	69
8.	ANEXOS		7
	8.1 DESC	CRIPCIÓN AGIES ASOCIADOS A PDA Y PPA	7
	8.1.1	Plan de Descontaminación Chuquicamata	
	8.1.2	Plan de Descontaminación Caletones	
	8.1.3	Plan de Descontaminación Potrerillos	
	8.1.4	Plan de Descontaminación María Elena y Pedro de Valdivia	
	8.1.5	Plan de Prevención y Descontaminación de la Región Metropolitana	
	8.1.6	Plan de Descontaminación Tocopilla	
	8.1.7	Plan de Descontaminación Temuco y Padre las Casas	
	8.1.8	Plan de Prevención Concepción Metropolitano	

8.2 AIR CONTROL NET (ACN)	78
8.3 CONTROL STRATEGY TOOL (COST)	
8.3.1 Estrategias de control	
8.3.2 Base de datos de las medidas de control (CMDB)	
8.3.3 Medidas y Ecuaciones de Costo	
8.4 GAINS	
8.4.1 Metodología General	
8.4.2 Medidas, Eficiencia y Costos	131
8.5 ESTRATEGIAS DE CONTROL SCAQMD	
Lista de Tablas	
Tabla 4-1 Planes de Descontaminación y Prevención Ambiental establecidos en Chile	4
Tabla 4-2 Tabla Comparativa de la Metodología Utilizada en los AGIES	
Tabla 4-2 Tabla Comparativa de la Metodologia Otilizada en los AGIES Tabla 4-3 Medidas de Abatimiento de Emisiones evaluadas en el AGIES del PDA Caletones	
Tabla 4-4 Consideraciones de las medidas para ser incluidas al modelo genérico	
Tabla 4-5 Medidas de Abatimiento de Emisiones evaluadas en el AGIES del PDA Potrerillos	
Tabla 4-6 Medidas de Abatimiento de Emisiones evaluadas para el PDA de María Elena y Pedro de	
Tabla 4-8 Medidas de Abatimiento de Emisiones evaluadas para el PDA de Maria Eleña y Pedro de Tabla 4-7 Medidas de Abatimiento de Emisiones evaluadas para el PPDA de la Región Metropolita	
Tabla 4-8 Medidas de Abatimiento de Emisiones evaluadas para el PDA de Tocopilla	
Tabla 4-8 Medidas de Abatimiento de Emisiones evaluadas para el PDA de Tocopina Tabla 4-9 Medidas de Abatimiento de Emisiones evaluadas para el PDA de Temuco y Padre Las Cas	
Tabla 4-9 Medidas de Abatimiento de Emisiones evaluadas para el FDA de Temido y Fadre Las Cas Tabla 4-10 Consideraciones de las medidas para ser incluidas al modelo genérico	
Tabla 4-11 Programas complementarios propuestos para el PDA de Temuco y Padre Las Casas	
Tabla 4-12 Medidas de Abatimiento de Emisiones evaluadas para las fuentes industriales	
Metropolitano	-
Tabla 4-13 Medidas de Abatimiento de Emisiones evaluadas para el PPA de Concepción Metropoli	
Tabla 4-14 Programas complementarios propuestos para el PPA de Concepción Metropolitano	
Tabla 4-15 Medidas de Abatimiento de Emisiones evaluadas para el PDA del Valle Central de la VI I	
Tabla 4-16 Listado de medidas resultantes luego de la realización del taller en Temuco	_
Tabla 4-17 Listado de programas complementarios resultantes luego de la realización del taller en	
Tabla 4-18 Iniciativas Plan de Gestión de Calidad de Aire Perth, Australia	
Tabla 4-19 Medidas Planes de Gestión de Calidad del Aire en Italia	
Tabla 4-20 Costos Sistemas de Calefacción NZ	
Tabla 4-21 Resumen Progreso de Iniciativas Perth AQMP	
Tabla 4-22 Tipos de Fuentes Móviles ACN	
Tabla 4-23 Medidas de Control Fuentes Móviles – AirControlNET	
Tabla 5-1 Distribución de Medidas y Programas Complementarios del Listado Consolidado de Me	
a Incluir	
Tabla 5-2 Definición de Tipologías de Medidas	
Tabla 5-3 Listado de Medidas Incluidas en el Modelo Genérico	
Tabla 5-4 Clasificación según Tipología de Medida para el Sector Industrial	
Tabla 5-5 Clasificación según Tipología de Medida para el Sector Residencial	
Tabla 5-6 Clasificación según Tipología de Medida para Fuentes Fugitivas	
Tabla 5-7 Clasificación según Tipología de Medida para Fuentes Móviles	
Tabla 5-8 Programas Complementarios que serán incluidos en el modelo	
Tabla 6-1 Ordenamiento de Medidas según Costo-Efectividad	
Tabla 6-2: Costo-efectividad Medidas de Fuentes Industriales	
Tabla 6-3 Costo-efectividad Medidas de Fuentes Móviles	
Tabla 6-5 Costo Efectividad Medidas del Sector Residencial	
Tabla 6-5 Costo Efectividad Medidas de Fuentes Fugitivas	
Tabla 8-1Eficiencia de Reducción y Costos Medidas Fuentes Móviles – AirControlNET	

Tabla 8-2 Descripción de los campos de la tabla de resumen	87
Tabla 8-3 Descripción de los campos de la tabla de registro de eficiencias	89
Tabla 8-4 Descripción de los campos de la tabla SCC	
Tabla 8-5 Descripción de los campos de la tabla de ecuaciones	
Tabla 8-6 Sectores y Categorías del inventario de emisiones considerados por CoST	92
Tabla 8-7 Eficiencia de Reducción Fuentes Puntuales	93
Tabla 8-8 Eficiencia de Reducción Fuentes Areales	95
Tabla 8-9 Ecuaciones de Costo para modelo CoST	
Tabla 8-10 Costo de Capital Fijo y Escalado Ecuaciones Tipo 4-6	
Tabla 8-11 Costo Fijo y Variable de OyM Ecuaciones Tipo 4-6	
Tabla 8-12 Parámetros Estimación Costo – Ecuación 9 (USD1990)	
Tabla 8-13 Parámetros Estimación Costo – Ecuación 10 (USD2005)	
Tabla 8-14 Parámetros estimación de costos – Ecuación Tipo 1 – NO _x – Calderas Industriales	
Tabla 8-15 Parámetros estimación de costos – Ecuación Tipo 1 – SO ₂	114
Tabla 8-16 Parámetros estimación de costos – Ecuación Tipo 2 - NO _x	115
Tabla 8-17 Costos Unitarios – Fuentes Puntuales no IPM (ptnonipm)	
Tabla 8-18 Parámetros estimación de costos – Ecuaciones Tipo 3 - 6 – SO ₂	118
Tabla 8-19 Costos Unitarios – Ecuación Tipo 11 – SO ₂	
Tabla 8-20 Parámetros estimación de costos – Ecuación Tipo 8 - MP	120
Tabla 8-21 Costos Unitarios – Ecuación Tipo 8 – MP	121
Tabla 8-22 Sectores incluidos en el modelo GAINS	
Tabla 8-23 Eficiencia de abatimiento - sector industrial y de generación eléctrica	134
Tabla 8-24 Eficiencia de abatimiento – sector residencial y comercial	
Tabla 8-25 Eficiencia de abatimiento – fuentes con emisión no asociada a la combustión	136
Tabla 8-26 Eficiencia de abatimiento (%) – transporte de carretera - Diesel	137
Tabla 8-27 Eficiencia de abatimiento (%) – transporte Off-Road- Diesel	137
Tabla 8-28 Eficiencia de abatimiento (%) – motores con encendido a chispa	
Tabla 8-29 Eficiencia de abatimiento (%) cambio a combustibles bajo en azufre	
Tabla 8-30 Parámetros de Costo Tecnologías de Remoción de MP – Fuente Estacionarias con combust	
Industria / Generación Eléctrica	
Tabla 8-31 Parámetros de Costo Tecnologías de Remoción de MP – Fuente Estacionarias con combust	
Residencial /Comercial /Servicios /Agricultura	
Tabla 8-32 Parámetros de Costo Tecnologías de Remoción de SO ₂ – Fuente Estacionarias con combustión	146
Tabla 8-33 Parámetros de Costo Tecnologías de Remoción de NO _x – Fuente Estacionarias con combustión	
Tabla 8-34 Parámetros de Costo Tecnologías de Remoción de MP – Procesos Industriales – Buenas prá	
(emisiones fugitivas)	
Tabla 8-35 Parámetros de Costo Tecnologías de Remoción de MP – Procesos Industriales – Ciclón	
Tabla 8-36 Parámetros de Costo Tecnologías de Remoción de MP – Procesos Industriales – Precipi	tador
electrostático de 1 campo	
Tabla 8-37 Parámetros de Costo Tecnologías de Remoción de MP – Procesos Industriales – Precipi	tador
electrostático de 2 campos	
Tabla 8-38 Parámetros de Costo Tecnologías de Remoción de MP – Procesos Industriales – Eliminador de pol	vo de
alta eficiencia	155
Tabla 8-39 Parámetros de Costo Tecnologías de Remoción de MP – Otras Fuentes	
Tabla 8-40 Parámetros de Costo Tecnologías de Remoción de SO ₂ – Fuentes con emisión no asociada	
combustión de combustible	
Tabla 8-41 Parámetros de Costo Tecnologías de Remoción de NO _X – Fuentes con emisión no asociada	ı a la
combustión de combustible	
Tabla 8-42 Costos Tecnológicos – transporte de carretera - Diesel	
Tabla 8-43 Costos Tecnológicos – transporte Off-Road- Diesel	
Tabla 8-44 Costos Tecnológicos – motores con encendido a chispa	161

GreenLabUC

Gestión y Política Ambiental DICTUC S.A.

Tabla 8-45 Costo cambio a combustibles bajo en azufre	
Lista da Eiguras	
Lista de Figuras	
Figura 9-1. Diagrama de los pasos básicos para ejecutar una estrategia de control	80

Acrónimos y Abreviaturas

Instituciones

EPA: Agencia de Protección Ambiental de los EE.UU

DEFRA: Department for Environment, Food and Rural Affairs (UK)

HEID: Health and Environmental Impacts Division, EPA

IIASA: Instituto Internacional para el Análisis de Sistemas Aplicados

INN: Instituto Nacional de Normalización

OCDE: Organization for Economic Co-operation and Development

SEC: Subsecretaria de Electricidad y Combustibles

Países

EE.UU.: Estados Unidos de América

Abreviaturas

ACN: Air Control NET

AGIES: Análisis General del Impacto Económico y Social

ASM: Acceleration Simulation Mode BAT: Best Available Technology

BAU: Business As Usual

CMBD: Control Measure Date Base

CoST: Control Strategy Tool
CSV: Comma-Separated Value

EMEP: European Monitoring and Evaluation Programme

EMF: Emissions Modelina Framework

FE: Factor de Emisión

F.O.: Fuel Oil

GAINS: Greenhouse gas – Air pollution Interaction and Synergies

GBP: Great Britain Pounds (Libras Esterlinas Británicas)

GEC: Gestión de Episodios Críticos
 GLP: Gas Licuado del Petróleo
 GNC: Gas Natural Comprimido
 GNL: Gas Natural Licuado

IPM: Integrated Planning Model

NA: Nivel de Actividad

NEI: National Emission Inventory

NZD: New Zeland Dollar

OCDE: Organización para la Cooperación y el Desarrollo Económico

OyM: Operación y Mantención

PDA: Plan de Descontaminación Ambiental

PIB: Producto Interno Bruto

PPDA: Plan de Prevención y Descontaminación Ambiental

QA: Quality Assurance

RAINS: Regional Air Pollution Information and Simulation

SCC: Source Classification Code
SQL: Structured Query Language
U: Transmitancia Térmica

UE: Unión Europea
VKM: vehículo – kilómetro

Contaminantes

CE: Carbón Elemental

CH₄: Metano

CO: Carbón Orgánico CO₂: Dióxido de carbono

COR: Compuestos orgánicos reactivos COV: Compuestos orgánicos volátiles

HFC: Hidrofluorocarbono

Hg: Mercurio

MP: Material Particulado

NH₃: Amoníaco N₂O: Óxido Nitroso

NO_x: Óxidos de Nitrógeno PFC: Perfluorocarbono PRS: Polvo Resuspendido

PTS: Partículas Totales Suspendidas

SF₆: Hexafluoruro de azufre

SO₂: Dióxido de Azufre SO_X: Óxidos de Azufre

Unidades Utilizadas

cal: caloría

CLP: pesos chilenos

eq: equipo g: gramo

GBP: Great Britain Pounds

h: hora
ha: hectárea
l: litro
lb: libra
m: metro
ton: tonelada

USD: dólares de Estados Unidos

veh: vehículo W: Watt

Wh: Watt-hora

1. Antecedentes

La recuperación de la calidad del aire en los centros urbanos ha sido una de las prioridades gubernamentales de los últimos años. Se han realizado diagnósticos e inventarios de emisiones en las principales ciudades del país, lo que ha permitido iniciar las gestiones de solución para aquellos problemas detectados, como por ejemplo la contaminación generada por la combustión de leña y por la intensa actividad industrial. Para esto se han desarrollado distintas herramientas de gestión ambiental que permiten afrontar esta problemática.

Así, un Plan de Descontaminación Ambiental (PDA) es un instrumento de gestión ambiental que tiene por finalidad recuperar los niveles señalados en las normas primarias y/o secundarias de calidad ambiental de una zona saturada. Por otro lado, un Plan de Prevención Ambiental (PPA) es un instrumento de gestión ambiental que tiene por finalidad evitar la superación de una o más normas de calidad ambiental primaria o secundaria, en una zona latente.

Actualmente ya han sido declaradas zona saturada por concentración de MP10 (diaria y anual) Rancagua, Talca-Maule, Concepción, Temuco y Padre Las casas. Sumado a lo anterior, a partir de este año, entra en vigor la normativa para material particulado fino (MP2,5) y comenzará el proceso de declaración de zona saturada para este contaminante en Rancagua, Concepción, Talca-Maule, Chillán, Temuco y Padre las Casas y Osorno.

Luego de que las zonas sean declaradas saturadas o latentes, comienza el proceso de elaboración de un PDA o PPA, según corresponda, el que deberá contar con un Análisis General de Impacto Económico y Social (AGIES).

De lo anterior, nace la necesidad de desarrollar un modelo de evaluación económica y social de planes de descontaminación y/o de prevención ambiental aplicado a la reducción de contaminación atmosférica, que se enfoque principalmente en los problemas derivados del uso de leña en la zona sur del país. La herramienta a desarrollar permitirá la evaluación de estos planes para distintas zonas geográficas del país de manera fácil y expedita, constituyendo un recurso importante tanto en el corto como en el largo plazo.

Vicuña Mackenna 4860, Macul, Santiago - Chile • Fono: (56 2) 354 4886 • Fax (56 2) 354 4954 • www.dictuc.cl

2. Objetivos del estudio

2.1 Objetivo General

Desarrollar una herramienta de evaluación y decisión para planes de prevención y descontaminación ambiental (PPDA y PDA) a través del desarrollo de un modelo matemático genérico que permita evaluar los beneficios y costos de la aplicación de medidas de reducción de contaminantes atmosféricos en función de parámetros de entrada que puedan ser modificados por el usuario.

2.2 Objetivos específicos

- Desarrollar una metodología genérica para la evaluación de PPDA y PDA.
- Recopilar un conjunto completo de medidas de abatimiento, de aplicación potencial en distintas zonas geográficas del país.
- Desarrollar un modelo matemático genérico de evaluación de PDA que funcione a través de módulos independientes, en función de los parámetros de entrada, y que permita la estimación de emisiones y de factores de emisión-concentración.
- Aplicar el modelo desarrollado para la valoración de PDA específicos acordados con la contraparte técnica.
- Capacitar continuamente a la contraparte técnica en el manejo completo del modelo.

3. Productos de la Presente Entrega

La presente entrega contempla los productos tanto de la entrega correspondiente al Informe de Avance 1, 2, 3, 4 con todas las observaciones subsanadas realizadas por la contraparte junto con los productos correspondientes al Informe Final, todos listados a continuación:

- Desarrollo de una metodología genérica para la evaluación de PDA y PPDA, consistente con la metodología propuesta en la "Guía Metodológica para la Elaboración de un Análisis General del Impacto Económico y Social (AGIES) para Instrumentos de Gestión de Calidad del Aire".
- Recopilación de un set completo de medidas de abatimiento, de aplicación potencial en distintas zonas geográficas del país.
- Evaluación detallada de medidas y su respectivo ingreso en el modelo. Estas fueron discutidas y consensuadas con la contraparte técnica.
- Desarrollo de un modelo genérico de evaluación de PDA que funcione a través de módulos independientes, en función de los parámetros de entrada, y que permita la estimación de emisiones y de factores de emisión-concentración.
 - ✓ Modelo con módulos independientes y fácilmente modificables por el usuario.
 - ✓ Parámetros de entrada generales a nivel país modificables por el usuario.
 - ✓ Parámetros de entrada específicos a nivel de zona modificables por el usuario.
 - Parámetros de evaluación de medidas pudiendo modificar la efectividad de la medida, la penetración, crecimiento de las emisiones, entre otros.
 - Evaluación de medidas de abatimiento de línea base y de caso con proyecto (con PDA).
 - ✓ Desarrollo de módulos de estimación de emisiones, estimación de costos, estimación de beneficios, estimación de reducción de concentraciones (FEC), evaluación de indicadores económicos.
 - ✓ Generación de curvas de costo medio de medidas seleccionadas para la evaluación de un PDA.
 - Evaluación de interrelaciones de medidas de un mismo sector (sinergias y anti sinergias).
- Manual de Uso del Modelo Genérico
- Realización de AGIES para Planes de Descontaminación de MP2.5 de 3 zonas del país.
 - ✓ AGIES PDA de Rancagua
 - ✓ AGIES PDA de Temuco y Padre las Casas
 - ✓ AGIES PDA de la Ciudad de Chillan

Los documentos asociados a la presente entrega se describen a continuación:

PDA – Informe Final

Corresponde al presente documento y contiene toda la revisión bibliográfica que permitió generar el listado de medidas de reducción de emisiones de contaminantes locales y recopilar antecedentes tanto para la construcción del modelo genérico como para la para la evaluación de medidas contenidas en este. En este documento también se presenta el listado de medidas que se están incluyendo en el modelo junto con descripciones generales de ellas. Se presentan los resultados de costo efectividad de estas evaluadas unitariamente, generando un ordenamiento según este indicador para cada sector y con información y supuestos correspondiente a la zona de Temuco y Padre las Casas. A este documento se le anexan los siguientes:

- PDA Anexo Medidas: Ficha para cada medida evaluada la cuales contienen una descripción detallada junto con los principales supuestos y parámetros, drivers y referencias bibliográficas.
- PDA ListadoAmpliadoMedidas-Consolidado: Documento Excel que resume la información bibliográfica relativa a medidas de reducción de emisiones recopilada.
- PDA Medidas a Evaluar: Documento que lista, de manera consolidada, todas las medidas que se incluyen en el modelo con su respectiva calificación y prioridad de evaluación.
- Modelo: Versión actualizada del modelo junto con su base de datos de lectura
- PDA Manual Final: Versión actualizada del Manual de Uso del Modelo.

4. Revisión Bibliográfica

La revisión bibliográfica que se realizó para el presente estudio tuvo como objetivo recopilar información para 3 análisis diferentes.

En primer lugar se realizó una revisión de todos los AGIES asociados a un PDA o PPDA elaborados a nivel nacional con el objetivo principal de analizar la metodología de evaluación que estos utilizaron y establecer patrones comunes o mejores prácticas para que posteriormente esto sirva de "input" para la elaboración de una metodología general para abordar una evaluación de PDA o PPDA.

En segundo lugar, se revisaron diferentes documentos con el objetivo de establecer un listado exhaustivo de medidas existentes para la reducción de emisiones, con especial énfasis en medidas asociadas a calefacción y su relación con el uso de leña. La revisión de documentos a nivel nacional contó con el análisis de las medidas evaluadas en los AGIES asociados a PDA y PPDA y otros documentos que sirvieron de antecedentes para la elaboración de los AGIES. A nivel internacional, la revisión se basó en los principales programas y documentos que realizan una recopilación de medidas de reducción de emisiones, tanto europeos como de la EPA.

Por último, también se realizó una revisión de modelos internacionales ya existentes que tienen alguna similitud con el objetivo principal de la presente consultoría, es decir, desarrollar un modelo matemático genérico que permita evaluar los beneficios y costos de la aplicación de medidas de reducción de contaminantes atmosféricos. Lo que se busca con esta revisión es rescatar elementos de interés que puedan ser aplicados en la herramienta que se desarrollará.

A continuación se presenta mayor detalle de la revisión bibliográfica realizada.

4.1 Metodologías de Evaluación

La revisión bibliográfica que tiene relación con las metodologías de evaluación de los PDAs y PPAs se basó en la revisión de las metodologías utilizadas en los AGIES asociados a estos.

La tabla que se presenta a continuación lista todos los PDAs o PPAs que se han establecido en Chile hasta la fecha:

Tabla 4-1 Planes de Descontaminación y Prevención Ambiental establecidos en Chile

Tipo de Plan	Zona Geográfica	Año Publicación Norma	Contaminantes responsables de declaración Zona Latente o Saturada	Existencia de AGIES
PDA	Ventanas	1992	SO₂ y MP10 (saturada)	No
PDA	Chuquicamata	1993 + actualizaciones	SO₂ y MP10 (saturada)	Sí
PDA	Fundición Hernán Videla Lira	1995	SO₂ (saturada)	No
PDA	Caletones	1998	SO₂ y MP10 (saturada)	Sí
PDA	Potrerillos	1999	SO ₂ y MP10 (saturada)	Sí
PDA	María Elena y Pedro de Valdivia	1999 + actualizaciones	MP10 (saturada)	Sí
PPDA	Región Metropolitana	2000 + actualizaciones	O_3 , MP10, CO (saturada) NO ₂ (latente)	Sí
PDA	Tocopilla	2010	MP10 (saturada)	Sí
PDA	Temuco y Padre las Casas	2010	MP10 (saturada)	Sí
PPA	Concepción Metropolitano	En evaluación de anteproyecto	MP10 (latente)	Sí
PDA	Valle Central de la VI Región	En evaluación de anteproyecto	MP10 (saturada)	Sí

Fuente: Elaboración propia

Es a partir del Decreto Supremo 93, en su Artículo 15 (publicado el año 1995) que se establece la elaboración de un AGIES luego de la elaboración de un anteproyecto de norma. Por este motivo, existen 2 PDA que no tienen un AGIES asociado, por lo que no formaron parte de la presente revisión.

Por su parte, a pesar de que el PDA de Chuquicamata fue aprobado el año 1993 y por ende no posee un AGIES asociado, el año 2000 se elabora un AGIES para la actualización de dicho Plan el cual sí es analizado en la presente sección.

Luego de revisar detalladamente los AGIES asociados a los PDAs y PPDAs listados en la tabla anterior, y en la búsqueda de determinar el tipo de análisis de costo y beneficios que realiza cada uno, la tabla a continuación presenta un resumen de todos ellos. En el Anexo 8.1 se presenta un mayor detalle de cada uno, especificando también el autor que los elaboró.

Tabla 4-2 Tabla Comparativa de la Metodología Utilizada en los AGIES

Plan	Fuentes ¹	Categorías ²	Contaminantes Reducción E ³	Tipo Análisis Económico	Costos	Beneficios	Contaminantes Beneficios ⁴
PDA Chuquicamata	Fijas	Industrial	SO₂ MP10	Costo Beneficio	Valorizados	Valorizados Salud	SO ₂ MP10
PDA Caletones	Fijas	Industrial	SO ₂ MP10	Costo Beneficio	Valorizados	Valorizados Salud Identificados Recursos agrícolas y ganaderos Recursos forestales Materiales Turismo y la recreación	SO₂ MP10
PDA Potrerillos	Fijas	Industrial	SO ₂ MP10	Costo Beneficio	Valorizados	Valorizados Salud Identificados Recursos naturales Materiales	SO₂ MP10
PDA María Elena y Pedro de Valdivia	Fijas	Industrial	MP10	Costo	Valorizados	No Especificado	
PDA María Elena y Pedro de Valdivia (Actualización)	Fijas	Industrial	Sin calculo de reducción de emisiones	Descriptivo	Identificados	Identificados Salud	
PPDA Región Metropolitana	Fijas	Industrial Residencial Quemas	MP10 MP2,5 SOx	Costo Beneficio	Valorizados	Valorizados Salud Visibilidad	MP2,5 (Salud y Visibilidad) MP10

¹ Se refiere a fuentes afectadas por las medidas de reducción evaluadas en el respectivo AGIES.

² Se refiere a las categorías específicas afectadas por las medidas de reducción evaluadas en el respectivo AGIES.

³ Se refiere a los contaminantes a los cuales se les estima la reducción de emisiones asociadas a las medidas evaluadas.

⁴ Se refiere a los contaminantes considerados al estimar los beneficios de la columna anterior.

Plan	Fuentes ¹	Categorías ²	Contaminantes Reducción E ³	Tipo Análisis Económico	Costos	Beneficios	Contaminantes Beneficios ⁴
		Camiones	NO _x			Materiales	(Materiales)
		Buses	СО				
		Vehículos	COV			Identificados	
	Móviles	Particulares y	CO ₂			Ecosistemas	
		Comerciales	PRS			Acuáticos	
		Motocicletas				Bosques y Árboles	
		Fuera de Ruta				GEI	
	Fugitivas	Calles				Agricultura	
		Pavimentadas					
	Otras	Áreas Verdes					
	Fijas	Industrial				Valorizados	
PDA Tocopilla	Fugitivas	Varias	MP10	Costo Beneficio	Valorizados	Salud Identificados Materiales	MP10
		Industrial					
	Fijas	Residencial					
DDA Tamarras y Dadus las		Quemas				Valorizados	
PDA Temuco y Padre las Casas	Móviles	Buses	MP10	Costo Beneficio	Valorizados	Salud	MP10
Casas		Áreas Verdes				Visibilidad	
	Otras	Instrumentos					
		Económicos					
		Industrial					
	Fijas	Residencial				Valorizados	
PPDA Concepción	i ijas	Quemas	MP10	Costo Beneficio	Valorizados	Salud	MP10
Metropolitano		Agrícolas	IAIL TO	COSTO DELICITO	valorizados	Visibilidad	INIL TO
	Móviles	Camiones				Visibilidad	
	Otras	Áreas Verdes					

Fuente: Elaboración propia en base a AGIES analizados.

GreenLabUC

Gestión y Política Ambiental DICTUC S.A.

Cabe destacar que en esta tabla no se presenta el AGIES del Plan de Descontaminación Atmosférica del Valle Central de la Región de O'Higgins, preparado por la Universidad de Concepción, debido a que éste no se encuentra finalizado ni es un documento público aún. De todas maneras, las medidas de reducción de emisiones contenidas en este documento fueron incluidas en la recopilación (ver Sección 4.2.1.9).

Como se aprecia en la tabla anterior, no existe un patrón común de elaboración de AGIES debido a que, aunque ya es una práctica común valorizar tanto los costos como los beneficios, los métodos de valorización que utilizan estos son muy variados, sobre todo al valorizar los beneficios producto de la reducción de la concentración de los contaminantes.

La diferencia entre las fuentes (fijas, móviles, fugitivas, otras) que se consideran en cada uno de los AGIES radica principalmente en que, en cada una de las zonas geográficas que han sido declaras saturada o latente por algún contaminante, las fuentes que aportan en mayor medida a las emisiones que se quieren reducir son diferentes, lo que hace esperable y justificable estas diferencias.

Cabe destacar que no ha sido una práctica común la contabilización de la reducción de emisiones de otros contaminantes, considerando la estimación de reducciones sólo para el contaminante por el cual el área fue declarada fuera de norma. Éste es un antecedente bastante importante, ya que la reducción de un contaminante, en particular producto de la implementación de una medida, probablemente también generará reducción en otros contaminantes, lo que también puede generar beneficios ambientales.

Por último, se destaca que para la valorización de beneficios en salud se ha utilizado principalmente el contaminante MP₁₀, siendo que la experiencia internacional en el tema indica que es la fracción fina (MP_{2,5}) la que presenta una relación causal con mortalidad prematura y morbilidad respiratoria y cardiovascular (EPA 2009), lo que hace suponer que son las funciones dosis respuesta de MP_{2,5} las que deben ser utilizadas. Este último punto, sumado a la necesidad de incluir la reducción de otros contaminantes, y a que algunos de éstos también forman parte de la fracción fina del material particulado, muestra que la estimación de los beneficios en los AGIES elaborados no se ha modelado de la manera correcta.

Muchas de estas falencias debieran quedar superadas en la realización de los AGIES que se desarrollarán de ahora en adelante, debido a que éstos deberán responder a la metodología establecida en la "Guía Metodológica para la Elaboración de AGIES para Instrumentos de Gestión de Calidad del Aire" (GreenLabUC 2011), la cual establece ciertos patrones claves en la elaboración de este tipo de análisis.

4.2 Medidas de Abatimiento

La presente sección pretende describir la revisión, tanto internacional como nacional, de estudios o planes de gestión de calidad de aire, con el objetivo de recopilar medidas de abatimiento que se utilizan en la actualidad para reducir los contaminantes ambientales. Esta revisión tiene dos objetivos principales. El primero consiste en la realización de una revisión exhaustiva de medidas de abatimiento de emisiones para finalmente seleccionar aquellas que serán incluidas al modelo genérico de evaluación de PDAs. El segundo objetivo es recopilar información de costos y potencial de reducción de las medidas de abatimiento estudiadas.

Lo que se presenta en el cuerpo del presente documento corresponde a un resumen de lo recopilado; información detallada de las medidas se presentan en los anexos digitales que acompañan a esta entrega (PDA-ListadoAmpliadoMedidas-Consolidado.xlsx) y en algunos casos, se indica el documento original donde se encuentra toda la información.

4.2.1 Nacional

La revisión nacional, al igual que la revisión de metodologías presentada en la Sección 4.1, se basó en las medidas evaluadas en los AGIES asociados a los PDAs y PPAs realizados en Chile a partir del año 1995. Esta revisión se vio complementada con la revisión de algunos documentos que sirvieron de antecedentes para la elaboración de estos AGIES, los cuales poseían un listado ampliado de medidas y/o mayor información de costos y potencial de reducción lo que justificó su revisión.

A continuación se presentará, para cada una de las zonas geográficas que poseen (o se encuentra en evaluación) un PDA o PPA, un resumen de las medidas asociadas a estos planes. Mayor detalle de estas se encuentra en el anexo digital que acompaña a este informe (PDA-ListadoAmpliadoMedidas-Consolidado.xlsx).

Adicionalmente, en la Sección 4.2.1.10.1, se presentan las medidas específicas contenidas comúnmente en un programa de aislación térmica, con el objetivo de analizar la opción de incluirlas en el modelo de manera independiente y no como una medida genérica "aislación térmica". También, con el objetivo de ahondar en las medidas de reducción de emisiones asociadas a la calefacción residencial y la utilización de leña, se presenta un listado de medidas y programas que corresponden a uno de los resultados de una jornada de trabajo y discusión realizada en Temuco (ver Sección 4.2.1.10.2).

4.2.1.1 Chuquicamata

El año 1991 se declara zona saturada al área circundante a la Fundición Chuquicamata de la División del mismo nombre perteneciente a CODELCO Chile, para los contaminantes anhídrido sulfuroso (SO₂) y material particulado respirable (MP10). El año 1993 se aprueba

un plan de descontaminación que establece reducciones de emisión y fija el cumplimiento de las normas de calidad para fines del año 1999.

El documento revisado corresponde a la elaboración del AGIES para evaluar un nuevo plan que establezca un cronograma de reducción de emisiones, de manera que se llegue a la meta de calidad fijada por las normas de calidad de los contaminantes SO₂ y MP10. Este documento fue realizado por CONAMA (2000).

En este caso, no se presentan medidas de abatimiento, ya que se declara que producto a inversiones asociadas a cumplir con la norma de arsénico, se reducirán las emisiones de SO₂. Por lo tanto, se consideró que para dar cumplimiento al cronograma de reducción de emisiones de SO₂ propuesto en el anteproyecto, la División Chuquicamata de CODELCO Chile no debía reducir su actividad durante el periodo ni implementar nuevos proyectos a los ya decididos, los cuales son el resultado de otras exigencias y decisiones propias de la División.

Según lo dicho anteriormente, a partir de la revisión del documento "Análisis General del Impacto Económico y Social Anteproyecto de Plan de Descontaminación para la Zona Circundante a la Fundición Chuquicamata de la División Chuquicamata de Codelco Chile" (CONAMA 2000), no se desprende ninguna medida que sea aplicable al modelo genérico.

4.2.1.2 Caletones

Mediante el D.S. Nº179 de Noviembre de 1994 del Ministerio Secretaría General de la Presidencia, se declaró zona saturada para SO₂ y MP₁₀ al área circundante a la Fundición Caletones de la División El Teniente de CODELCO Chile. En respuesta de esto es que CONAMA elaboró el AGIES del "Plan del de Descontaminación para el Área Circundante a la Fundición de Caletones de la División El Teniente de Codelco Chile" (CONAMA 1996). La siguiente tabla muestra el resumen de las medidas que fueron incluidas en el AGIES en referencia.

Tabla 4-3 Medidas de Abatimiento de Emisiones evaluadas en el AGIES del PDA Caletones

Medida	Tipo de Fuente	Categoría	Тіро	Cont.	Ef. Red	Costo/ Ton	Ec. Costo	¿Modelo?
Instalación de planta de ácido sulfúrico	Fuentes Fijas	Industrial	Cambio Tecnológico	SO ₂ MP ₁₀	No	No	No	Sí
Menor fusión concentrado	Fuentes Fijas	Industrial	Restricción Operación	SO ₂ MP ₁₀	No	No	No	Sí
Verificación, fiscalización y control	Fuentes Fijas	Industrial	Programa	SO ₂ MP ₁₀	No	No	No	No
Traslado población	No aplica	No aplica	No aplica	No aplica	No aplica	No aplica	No	Sí

Fuente: Elaboración propia en base a CONAMA (1996)

En particular, la medida de "Verificación, fiscalización y control" se le declara como no incluible al modelo tal como se presenta, sin embargo, de esta se desprende la medida de Monitoreo Continuo la cual sí se incluirá. Además se incluirá al modelo, como programa complementario, la medida "Fiscalización", en la cual se le tendrá que ingresar su costo manualmente y, si es que aplica, tendrá asociado un aumento en la efectividad y/o penetración de medidas específicas que se indiquen.

A pesar de que la información presentada en el AGIES, en general, no permite utilizarla para obtener los parámetros de construcción de las medidas en el modelo, estas medidas sí se pueden incluir en este, teniendo en cuenta ciertas consideraciones.

Tabla 4-4 Consideraciones de las medidas para ser incluidas al modelo genérico

Medida	Comentarios
Instalación de planta de ácido sulfúrico	El costo anualizado de la medida se debiera ingresar manualmente.
Menor fusión concentrado	Implica pérdidas por el menor valor neto que tiene vender el cobre como concentrado en comparación a venderlo fundido (cobre fino). El costo se debiera ingresar por tonelada de cobre no fundida.
Verificación, fiscalización y control	Se ingresará la medida "Monitoreo Continuo" y el programa complementario "Fiscalización"
Traslado población	Se debiera ingresar el costo de traslado de la población manualmente.

Fuente: Elaboración propia

Mayor detalle de las medidas presentadas, se encuentra en el anexo digital que acompaña a este informe (PDA-ListadoAmpliadoMedidas-Consolidado.xlsx).

4.2.1.3 Potrerillos

Mediante el D.S. 18/1997 del Ministerio Secretaría General de la Presidencia, se decreta zona saturada por SO₂ y MP10 al área circundante a la Fundición de Potrerillos, ubicada en la comuna de Diego de Almagro, Provincia de Chañaral, Región de Atacama.

El documento revisado corresponde a la elaboración del AGIES para evaluar el Plan de Descontaminación, el que fue realizado por CONAMA (1998). La siguiente tabla lista las medidas que fueron evaluadas en dicho documento.

Tabla 4-5 Medidas de Abatimiento de Emisiones evaluadas en el AGIES del PDA Potrerillos

Medida	Tipo de Fuente	Categoría	Тіро	Cont.	Ef. Red	Costo/ Ton	Ec. Costo	¿Modelo?
Traslado población	No aplica	No aplica	No aplica	No aplica	No aplica	No aplica	No	Sí
Instalación de planta de ácido sulfúrico	Fuentes Fijas	Industrial	Cambio Tecnológico	SO ₂ MP10	No	No	No	Sí
Remplazo de horno reverbero por convertidor teniente	Fuentes Fijas	Industrial	Cambio Tecnológico	SO ₂ MP10	No	No	No	Sí
Verificación, fiscalización y control	Fuentes Fijas	Industrial	Programa	SO ₂ MP10	No aplica	No aplica	No aplica	No
Menor fusión concentrado	Fuentes Fijas	Industrial	Restricción Operación	SO ₂ MP10	No	No	No	Sí

Fuente: Elaboración propia en base a (CONAMA 1998)

Los comentarios de las medidas presentadas en la tabla anterior son equivalentes a los realizados a las medidas presentadas en Tabla 4-4.

La única medida que difiere del AGIES asociado a Caletones corresponde a la medida "Remplazo de Horno Reverbero por Convertidor Teniente", la cual, en caso de incluirse al modelo, y sumado a que no posee información para utilizarla como parámetros de entrada, debe ser modelada a través de ecuaciones de costo que representen las características específicas de funcionamiento de la fuente.

4.2.1.4 María Elena y Pedro de Valdivia

El año 1993 se declara zona saturada a esta área para el contaminante MP10. Luego, en el año 1998, se aprueba el plan de descontaminación (D.S. 164/1998 del Ministerio Secretaría General de la Presidencia). El Servicio de Salud, posteriormente al realizar la

evaluación del plan señala que persiste incumplimiento de la norma de calidad por lo que se da inicio a la reformulación de este.

Por lo antes descrito, la revisión de medidas asociadas al PDA de María Elena y Pedro de Valdivia se basó en dos documentos. El primero de ellos asociado al plan de descontaminación original, el que fue realizado por SQM (1997) y el segundo, el cual efectivamente es un AGIES, asociado a la reformulación del plan, el cual fue elaborado por CONAMA(2001).

- ✓ SQM (1997). Plan del Descontaminación para el Material Particulado Respirable para las localidades de María Elena y Pedro de Valdivia.

 Este documento realiza una caracterización de las medidas y sus respectivas inversiones y costos de operación que la empresa ha realizado y realizará para cumplir con el plan de descontaminación.
- ✓ CONAMA(2001). Análisis General del Impacto Económico y Social "Anteproyecto de reformulación del plan de descontaminación para la localidad de María Elena y Pedro de Valdivia" Este documento evalúa los costos de cumplir con el plan de descontaminación, como el beneficio resultante de no restringir la producción. Por lo mismo, no plantea costo de medidas específicas.

Según lo anterior, las medidas que se presentan en la siguiente tabla corresponden solo al primer documento mencionado.

Tabla 4-6 Medidas de Abatimiento de Emisiones evaluadas para el PDA de María Elena y Pedro de Valdivia

Medida	Tipo de Fuente	Categoría	Тіро	Cont.	Ef. Red	Costo / Ton	Ec. Costo	¿Modelo?
Mejoramiento de chancadores terciarios	Fuentes Fijas	Industrial	Cambio Tecnológico	MP10				
Cambio y renovación de chancadores secundarios	Fuentes Fijas	Industrial	Cambio Tecnológico	MP10				
Cambio del chancador primario y traslado al área mina	Fuentes Fijas	Industrial	Cambio Tecnológico	MP10		No		No
Cambio sistema transporte y manejo mineral	Fuentes Fijas	Industrial	Cambio Tecnológico	MP10				
Cambio harneros terciarios y finos pampa	Fuentes Fijas	Industrial	Cambio Tecnológico	MP10				

Fuente: Elaboración propia en base a SQM (1997)

En SQM (1997), todas estas medidas tienen asociado un costo de inversión y de operación y mantención, pero no se encuentran asociadas a reducción de emisiones específicas. Debido a esto último y agregando que esta industria específica no es replicable a nivel nacional, el consultor considera que estas medidas no son aplicables al modelo genérico de evaluación de PDA.

4.2.1.5 Región Metropolitana

La Región Metropolitana (RM) fue declarada zona saturada por ozono, material particulado respirable, partículas en suspensión y monóxido de carbono; y Zona Latente por dióxido de nitrógeno mediante D.S. Nº 131/96 del 12 de Junio de 1996 del Ministerio Secretaría General de la Presidencia. El año 1998, el Decreto Supremo D.S. Nº16/98, oficializa el Plan de Prevención y Descontaminación Atmosférica para la Región Metropolitana (PPDA). Se han desarrollado dos procesos de actualización de dicho plan. A partir del primer proceso de actualización se promulgó el D.S. Nº59/2004 que definió un segundo proceso, iniciado oficialmente a partir del año 2006. Esto último producto de que la tasa de disminución anual de las concentraciones de MP10 y MP2,5 se ha visto mermada con el tiempo y las concentraciones se han estabilizado sin alcanzar aún la meta definida en la norma.

Los documentos analizados para la recopilación de medidas asociadas al PPDA corresponden a:

- SCL Econometrics (2007). Análisis General de Impacto Económico y Social del Rediseño del Plan Operacional para Enfrentar Episodios Críticos de Contaminación Atmosférica por Material Particulado Respirable (MP10) en la Región Metropolitana.
- DICTUC (2008). Análisis y Evaluación del Impacto Económico y Social del Plan de Descontaminación de la Región Metropolitana. Este documento realiza la evaluación económica y social de la implementación de las medidas contenidas en el PPDA inicial y de las nuevas medidas propuestas en el anteproyecto para la 2ª Actualización del PPDA, por lo que contiene el listado completo de medidas asociadas al PPDA de la RM.

En este caso, dada la cantidad de medidas que son evaluadas y/o mencionadas en los documentos revisados, se presenta un listado de estas con menor información que las mostradas anteriormente. Se incluye Medida, el Tipo de Fuente, si es que es incluible o no al modelo y un identificador numérico. La tabla ampliada puede ser revisada en el anexo digital que acompaña a este informe (PDA-ListadoAmpliadoMedidas-Consolidado.xlsx).

Tabla 4-7 Medidas de Abatimiento de Emisiones evaluadas para el PPDA de la Región Metropolitana

Medida	Tipo de	¿Aplicación directa	ID
A. (2010 A.D (700) 1 1 1 1 1 1 1 1 1	Fuente	modelo PDA?	(4)
Meta 2010 MP (50% de emisiones 1997)		No	(1)
Norma SO ₂ (ng/J) para todas las fuentes		No	(2)
Meta 2010 NO _x (50% de emisiones 1997)		No	(3)
Compensación fuentes nuevas RM		No	(4)
Norma de emisiones grupos electrógenos existentes		No	(5)
Norma de emisiones grupos electrógenos nuevos		No	(6)
Prohibición de quemas agrícolas		Sí	(7)
Rotulado de artefactos y clasificación por tipo + Prohibición de uso de artefactos según clasificación tipo + Limites de emisión	Fuentes Fijas	No	(8)
Regulación para el uso de calefactores. Gestión de Episodios Críticos (GEC)		Sí	(9)
Especificaciones del kerosene		Sí	(10)
Optimización del sistema de compensación de emisiones en la Industria		No	(11)
Normas de emisión para buses nuevos		No	(12)
Normas de emisión para vehículos pesados nuevos		No	(13)
Exigencias de tecnologías de control de emisiones y registro de flotas de vehículos de carga y servicio		No	(14)
Normas de emisión para vehículos livianos y medianos nuevos		No	(15)
Medición en revisión técnica modo ASM		Sí	(16)
Normas de emisión para motocicletas nuevas		No	(17)
Restricción vehicular permanente para el período GEC	Fuentes	Sí	(18)
Instalación de filtros en maquinarias fuera de ruta	Móviles	Sí	(19)
Programa de construcción de ciclovías urbanas		Sí	(20)
Programa para acelerar el retiro de los vehículos sin sello verde		Sí	(21)
Vehículos de cero y ultra baja emisión		Sí	(22)
Especificaciones petróleo diesel		Sí	(23)
Especificaciones de la gasolina]	Sí	(24)
Especificaciones gas licuado de petróleo (LPG) de uso vehicular		Sí	(25)
Plan Santiago Verde	No aplica	Sí	(26)
Programa aspirado de calles	Fuentes Fugitivas	Sí	(27)

Fuente: Elaboración propia en base a (SCL Econometrics 2007, DICTUC 2008)

Como se aprecia en la tabla anterior, muchas de estas medidas han sido clasificadas como no aplicables directamente al modelo genérico. La principal razón de esto es que estas medidas, tal como son descritas en los documentos revisados, no pueden ser modeladas como un todo sino que tienen asociadas otras medidas específicas que sí son posibles de modelar.

Las medidas de fuentes fijas asociadas a la categoría industrial (ID (1) al (6)) deben ser modeladas fuente por fuente y según la tecnología de abatimiento específica que debe aplicarse para cada fuente para así cumplir con la norma general. Estas tecnologías de abatimiento serán las incluidas en el modelo.

La medida con ID (11), a juicio del consultor, no debe ser incluida al modelo por no ser una medida concreta que reduzca emisiones directamente.

Pasando a las medidas de fuentes fijas del tipo residencial, la medida correspondiente al ID (8) tiene incluidas 3 medidas independientes; Norma de Emisión de Calefactores Nuevos, Norma de Emisión Calefactores Existentes (prohibición de utilización de tecnología más obsoleta) y Rotulado de Calefactores.

Estas medidas independientes tampoco clasifican como incluibles al modelo directamente. Norma de emisión de calefactores nuevos y existentes debe modelarse como recambio de equipo específico a equipo que cumple con la normativa teniendo además la consideración de que la Norma de Emisión de Calefactores Nuevos debe considerarse en la línea base y no como una medida⁵. La medida Rotulado de Calefactores no se considera una medida en sí ya que no genera directamente una reducción de emisiones. Por lo mismo, es considerado un programa complementario que podrá ser ingresado manualmente, ingresando también el costo que este implica.

Con respecto a las fuentes móviles, las medidas con ID (12), (13), (15) y (17) establecen la exigencia de que los vehículos nuevos que ingresen al mercado tengan tecnología EURO o EPA específicas en dos años diferentes, aumentando su exigencia en cada periodo. Por esta razón, estas medidas se deben modelar independientemente (Por ej. Norma EURO III para camiones nuevos y Norma EURO IV para camiones nuevos).

Por último, la medida ID (14), para ser incluida en el modelo debe transformase en Instalación de filtro de partículas en vehículos pesados antiguos a cambio de excepciones a las regulaciones que estos tienen en la actualidad.

Todas estas consideraciones y aclaraciones pueden apreciarse en su completitud en el anexo digital que acompaña a este informe (PDA-ListadoAmpliadoMedidas-Consolidado.xlsx).

⁵ A pesar de ser una medida que ya debiera estar incluida en la línea base de emisiones, de todas formas se incluirá en el modelo para aplicar la reducción de emisiones en caso de que la línea base ingresada al modelo no la tenga incluida.

in a liter

4.2.1.6 Tocopilla

El año 2007, el Ministerio Secretaría General de la Presidencia en el DS. N°50 declara zona saturada por material particulado respirable MP10, como concentración anual, a la zona circundante a la ciudad de Tocopilla. En respuesta a esto, se elabora el AGIES asociado al anteproyecto del Plan de Descontaminación de Tocopilla (DSS 2008), y es en base a este documento que se recopilan las medidas que son analizadas.

La siguiente tabla presenta todas aquellas medidas de abatimiento de emisiones que son evaluadas en el documento en referencia.

Tabla 4-8 Medidas de Abatimiento de Emisiones evaluadas para el PDA de Tocopilla

Medida	Tipo de Fuente	Categoría	Tipo	Cont.	Ef. Red	Costo/ Ton	Ec. Costo	¿Modelo?
Implementación, mejora o reconversión de actuales tecnologías de abatimiento	Fuentes Fijas	Industrial / Generación Eléctrica	Cambio Tecnológico	MP10	Sí	No	Sí	No
Cambio de combustible	Fuentes Fijas	Industrial / Generación Eléctrica	Cambio de Combustible	MP10	No	No	No	Sí
Medidas de control y reducción de emisiones de particulado fugitivo en otras industrias (SQM y LIPESED)	Fuentes Fugitivas	Todas	No aplica	MP10	No	No	Sí	No
Plan de monitoreo y seguimiento	Fuentes Fijas	Industrial / Generación Eléctrica	Programa	SO₂, NOχ, CO	No	No	Sí	Sí

Fuente: Elaboración propia en base a DSS (2008)

La primera medida mostrada en la tabla anterior no es posible incluirla al modelo directamente; esta medida debe ser modelada fuente por fuente y según la tecnología de abatimiento específica que debe aplicarse a cada fuente.

Con respecto a la medida de Cambio de Combustible, ésta, tal como lo indica la tabla, sí es incluible al modelo, sin embargo, hay que tener la consideración de que no todas las termoeléctricas permiten el cambio de combustible por lo que se debe realizar un análisis fuente por fuente.

Gestión y Política Ambiental DICTUC S.A.

Por último, las medidas de control y reducción de fuentes fugitivas son medidas específicas para dichas industrias que no son replicables a nivel nacional, por lo que el consultor las considera como no aplicables al modelo.

4.2.1.7 Temuco y Padre las Casas

Según el DS № 35/2005 del Ministerio Secretaría General de la Presidencia, las Comunas de Temuco y Padre Las Casas fueron declaradas zonas saturadas por MP10 en 24 horas debiendo implementarse un Plan de Descontaminación del Aire de acuerdo a lo establecido en la Ley 19.300 de Bases del Medio Ambiente. El documento revisado corresponde al AGIES de este PDA, el que fue preparado por CENMA (2007).

La tabla a continuación lista todas las medidas evaluadas en el documento en referencia.

Tabla 4-9 Medidas de Abatimiento de Emisiones evaluadas para el PDA de Temuco y Padre Las Casas

Medida	Tipo de Fuente	Categoría	Tipo	Cont.	Ef. Red	Costo/ Ton	Ec. Costo	¿Modelo?
Arborización urbana	No aplica	Áreas Verdes	Estrategia de Control	MP10	Sí	Sí	Sí	Sí
Prohibición de quemas agrícolas	Fuentes Fijas	Quemas Agrícolas	Restricción Operación	MP10	No	Sí	Sí	Sí
Norma de emisión calderas industriales	Fuentes Fijas	Industrial	Cambio Tecnológico	MP10	Sí	Sí	Sí	No
Prohibición comercialización leña húmeda	Fuentes Fijas	Residencial	Cambio Combustible	MP10	Sí	Sí	Sí	Sí
Prohibición funcionamiento de chimeneas abierto	Fuentes Fijas	Residencial	Cambio Tecnológico	MP10	Sí	Sí	Sí	Sí
Compensación de Emisiones para proyectos inmobiliarios (recambio artefactos combustión leña por equipos nuevos)	Fuentes Fijas	Residencial	Cambio Tecnológico	MP10	Sí	Sí	Sí	Sí
Subsidios aislamiento térmico viviendas sociales	Fuentes Fijas	Residencial	Estrategia de Control	MP10	Sí	Sí	Sí	No
Programa recambio de artefactos antiguos calefacción	Fuentes Fijas	Residencial	Estrategia de Control	MP10	Sí	Sí	Sí	No
Límite de antigüedad de buses a 15 años	Fuentes Móviles	Buses	Cambio Tecnológico	MP10	Sí	Sí	Sí	Sí

Fuente: Elaboración propia en base a CENMA (2007)

Como se aprecia en la tabla anterior, se establece que algunas de las medidas no son posibles de incluir directamente al modelo. La justificación de esto se presenta a continuación.

Tabla 4-10 Consideraciones de las medidas para ser incluidas al modelo genérico

Table 1 20 considerationes at las inicalado para ser inicialado al modelo Benerico						
Medida	Comentarios					
Norma emisión calderas industriales	Esta medida debe ser modelada fuente por fuente y según la tecnología de abatimiento específica que debe aplicarse para cada fuente.					
Subsidios aislamiento térmico viviendas sociales	La modelación de aislamiento térmico de viviendas debe ser realizada de manera independiente al subsidio otorgado por el Estado. Además, se modelará como medida específica cada una de las opciones de aislación (sellado de infiltraciones, techo, muros, ventanas, pisos).					
Programa recambio de artefactos antiguos calefacción	La modelación del recambio de artefactos de calefacción debe ser realizada de manera independiente al subsidio otorgado por el Estado. Se deben ingresar al modelo recambios específicos por tipo de artefacto.					

Fuente: Elaboración propia

Finalmente, de manera directa o indirecta, todas las medidas evaluadas en CENMA (2007) pueden ser incluibles al modelo.

En el anexo digital que acompaña este informe (PDA-ListadoAmpliadoMedidas-Consolidado.xlsx) es posible apreciar una extensión de las últimas tablas presentadas.

Adicionalmente, el documento del AGIES presenta una serie de medidas indirectas y programas complementarios que apoyan al cumplimiento de las medidas evaluadas y, por consiguiente, al de las metas de calidad del aire. La tabla a continuación lista los programas considerados.

Tabla 4-11 Programas complementarios propuestos para el PDA de Temuco y Padre Las Casas

r r r r r r r r r r r r r r r r r r r
Programas Complementarios
Diseño de Instrumentos Económicos
Modelo de Pronóstico
Estudios Complementarios
Plan Maestro Transporte
Regulación de Estufas
Fiscalización
Monitoreo
Campaña
Regulación Humedad Leña
Fiscalización Quemas
Estudio BPA Quemas
Quemas Aire Libre
Programa de Apoyo Leña Seca
Proyectos INNOVA Eficiencia Energética
Programa de Mejoramiento de Estufas
Campaña Sensibilización Aislación Térmica
Capacitación Construcción Sustentable
Campaña Sensibilización Educación
Incorporación Temática Contaminación
Capacitación Profesores
Campaña Preventiva Otoño-Invierno
Estrategia Comunicacional
Jente: Elaboración propia en base a CENMA (200

Fuente: Elaboración propia en base a CENMA (2007)

Estos programas no serán incluidos como medida de reducción en el modelo genérico, sin embargo, el modelo permitirá incluirlos manualmente, ingresando también manualmente el costo asociado a estos. En caso de aplicar, este tipo de programas complementarios estarán asociados a un aumento de la penetración y/o efectividad de una medida específica que sí esté incluida en el modelo (el aumento de penetración y/o efectividad deberá ser ingresado manualmente por el usuario).

4.2.1.8 Concepción Metropolitano

El año 2006, mediante DS Nº 41/2006, se declaró zona latente por concentraciones diarias de MP10 a 10 comunas del Gran Concepción. En vista de lo anterior, el año 2007 se da inicio al proceso de elaboración del Plan de Prevención Atmosférico (PPA). Los documentos revisados para la recopilación de medidas de abatimiento corresponden a:

✓ Universidad de Concepción y PROTERM (2011). Evaluación de Medidas para Reducir la Contaminación Atmosférica en Complejos Industriales y Grandes Fuentes del Gran Concepción.

Documento que en base a un análisis de las Mejores Tecnologías Disponibles (BAT, por sus siglas en inglés) concluye qué medidas de mitigación de material particulado para las grandes fuentes son las más adecuadas de implementar con su respectivo costo y reducción esperada.

✓ Universidad de Concepción (2011). Elaboración Análisis General de Impacto Económico y Social (AGIES) del Plan de Prevención Atmosférica de Concepción Metropolitano.

Documento que realiza el AGIES que evalúa el anteproyecto de norma del PPACM. Este documento utiliza los antecedentes entregados por Universidad de Concepción y PROTERM (2011) para evaluar económicamente las medidas correspondientes a las fuentes fijas industriales establecidas en el anteproyecto de norma⁶.

La siguiente tabla muestra las medidas propuestas por Universidad de Concepción y PROTERM (2011) para las fuentes industriales de Concepción Metropolitano.

⁶ Se destaca que este documento fue utilizado solo para rescatar las medidas que se evaluaron en este, sin extraer ningún supuesto ni metodología utilizada ya que el estudio no cumplió con los estándares de calidad por lo que no se considera un documento oficial.

o. Ad

Tabla 4-12 Medidas de Abatimiento de Emisiones evaluadas para las fuentes industriales de Concepción Metropolitano

Medida	Tipo de Fuente	Categoría	Tipo	Cont.	Ef. Red	Costo / Ton	Ec. Costo	¿Modelo?
Minister Stein System - Batería de Coque	Fuentes Fijas	Industrial	Cambio Tecnológico	MP	Sí	Sí	No	Sí
Filtro de mangas con enfriamiento de gases	Fuentes Fijas	Industrial	Cambio Tecnológico	MP	Sí	Sí	No	Sí
Precipitador electroestático seco	Fuentes Fijas	Industrial	Cambio Tecnológico	MP	Sí	Sí	Sí	Sí
Precipitador electroestático húmedo con enfriamiento de gases	Fuentes Fijas	Industrial	Cambio Tecnológico	MP	Sí	Sí	No	Sí
Sistema de cubiertas sobre canaletas de vaciado y un sistema de extracción con filtro de mangas	Fuentes Fijas	Industrial	Cambio Tecnológico	МР	Sí	Sí	No	Sí
Precipitador electroestático húmedo	Fuentes Fijas	Industrial	Cambio Tecnológico	MP	Sí	No	No	Sí
Cambio de combustible: F.O. por GNL	Fuentes Fijas	Industrial	Cambio Combustible	MP	Sí	No	Sí	Sí
Filtro de mangas	Fuentes Fijas	Industrial	Cambio Tecnológico	MP	Sí	No	Sí	Sí

Fuente: Elaboración propia en base a Universidad de Concepción y PROTERM (2011)

Cabe destacar que estas medidas son todas tecnologías de abatimiento a aplicar directamente a una fuente industrial por lo que pueden ser directamente incluibles al modelo. Para utilizarlas, es necesario realizar un análisis fuente por fuente.

La tabla a continuación presenta las medidas evaluadas en el AGIES preparado por Universidad de Concepción (2011).

Tabla 4-13 Medidas de Abatimiento de Emisiones evaluadas para el PPA de Concepción Metropolitano

Medida	Tipo de Fuente	¿Aplicación directa modelo PDA?	ID
Incorporación de tecnología de abatimiento y		No	(1)
compensación de emisiones en mayores fuentes		NO	(1)
Congelamiento de emisiones de MP y SO ₂ de los complejos industriales		No	(2)
Incorporación de tecnología de abatimiento en nuevos complejos industriales		No	(3)
Compensación de nuevas emisiones de MP en un 100%		Sí	(4)
Norma de Emisión de MP para hornos y calderas existentes		No	(5)
Norma de Emisión de MP, SO ₂ y NO _X para hornos y calderas nuevas		No	(6)
Reducción progresiva de los niveles de azufre en los combustibles	Fuentes Fijas	Sí	(7)
Abastecimiento al sector industrial de GNL y/o comprimido		Sí	(8)
Norma de emisión para calefactores nuevos de combustión a biomasa.		No	(9)
Prohibición de uso de chimeneas en zona urbana.		Sí	(10)
Recambio de equipos antiguos por nuevos de parte del Estado		No	(11)
Regulación leña seca		Sí	(12)
Subsidio al mejoramiento térmico de las viviendas nuevas y existentes.		No	(13)
Prohibición de quemas agrícolas		Sí	(14)
Sistema de monitoreo continuo de emisiones para MP10, SO ₂ y NO _X		Sí	(15)
Reducción de emisiones fugitivas	Fuentes Fugitivas	No	(16)

Fuente: Elaboración propia en base a Universidad de Concepción (2011)

Las medidas correspondientes a los ID del (1) al (3), (5) y (6) no son aplicables directamente al modelo debido a que deben ser modeladas fuente por fuente y según la tecnología de abatimiento específica factible a cada fuente. Las tecnologías de abatimiento específicas si son incluibles al modelo.

Por su parte, las medidas ID (9) y (11) se deben modelar como recambios de equipo específico a equipo que cumple la normativa⁷. Adicionalmente, el incentivo o subsidio por parte del Estado debe ser independiente a la medida en sí, solo modificando la penetración de esta.

⁷ En particular, la medida "Norma de emisión para calefactores nuevos" se debe considerar como línea base, sin embargo, se incluirá como medida (pero sin implicar costos) para aplicar la reducción de emisiones en caso de que la línea base ingresada al modelo no la tenga incluida.

Gestión y Política Ambiental DICTUC S.A.

Por último, la medida ID (13), también debe ser modelada de manera independiente al subsidio otorgado por el Estado. Además, se modelará como medida específica cada una de las opciones de aislación (sellado de infiltraciones, techo, muros, ventanas, pisos).

Adicionalmente, el AGIES de PPACM presenta una serie de programas complementarios que, como se comentó anteriormente, no serán incluidos directamente al modelo, pero sí se tendrá la opción de ingresarlos manualmente con su costo asociado y si es que aplica, estarán asociados a un aumento de la penetración y/o efectividad de una medida específica incluida en el modelo⁸. La tabla a continuación lista los programas complementarios considerados en este documento.

Tabla 4-14 Programas complementarios propuestos para el PPA de Concepción Metropolitano

D.:	rabia 4-14 Programas complementarios propuestos para el PPA de Concepción Metropolitario
Pro	gramas Complementarios
1	Operación de red de monitoreo, equipamiento adicional necesario para la red, auditorías de implementación, participación de expertos internacionales
2	Estudios de caracterización de emisiones para principales establecimientos industriales, modelo de exposición a contaminantes, generación de bases de datos de mortalidad y morbilidad, y estudios epidemiológicos.
3	Personal para el registro de calefactores a leña, incluye SEREMI del MMA y SEREMI de Salud
4	Estudios mensuales del SERNAC que en conjunto con la SEREMI del MMA entreguen información de locales donde se vende leña seca.
5	Personal para la fiscalización de mercado de leña.
6	Estudios para evaluar el reacondicionamiento térmico de viviendas, certificación térmica, y un programa de difusión y capacitación sobre instrumentos y recomendaciones para mejoramiento térmico.
7	Fiscalización de quemas agrícolas y forestales, además de mejoramiento de estadísticas.
8	Estudios sobre diagnóstico de plantas de revisión técnica y programas de financiamiento para mejora de tecnología en camiones.
9	Estudios sobre catastro de áreas verdes
10	Programas de acreditación de emisiones y tecnologías, certificación y capacitación internacional al personal involucrado en el PPACM
11	Diseño, desarrollo e implementación de programas a funcionarios municipales, líderes sociales y ambientales, plan de comunicación anual y actividades de difusión
12	Educación ambiental de la SEREMI del MMA y unidades educacionales
13	Personal, equipos y materiales para cada servicio que desarrolle actividades enmarcadas dentro del PPACM
14	Informes anuales para el seguimiento del plan

Fuente: Universidad de Concepción (2011)

4.2.1.9 Valle Central de la VI Región

El año 2009, mediante DS Nº 7/2009, se declaró zona saturada por MP10, en sus niveles anual y diario, a la zona comprendida por el Valle Central de la Región de O'Higgins.

⁸ Además se seleccionará una lista de programas "típicos" que estarán incluidos al modelo por defecto.

Bd

El documento que se revisó corresponde a un informe de avance del AGIES del Plan de Descontaminación del Valle Central de la VI Región (desarrollado por la Universidad de Concepción), por lo que las medidas evaluadas en este no se encuentran evaluadas en términos de costos y reducciones finales, sino que sólo presentan costos unitarios que serán utilizados en la evaluación futura. De todas formas, se presentan las medidas consideradas en este con el objetivo de incluirlas en el listado de medidas factibles a incluir en el modelo.

Tabla 4-15 Medidas de Abatimiento de Emisiones evaluadas para el PDA del Valle Central de la VI Región

Medida	Tipo de Fuente	Categoría	Tipo	¿Aplicación directa al Modelo?
Regulación leña seca	Fuentes Fijas	Residencial	Cambio Combustible	Sí
Norma de Emisión para Artefactos de Uso Residencial que Combustionan con Leña y Otros Combustibles de Biomasa	Fuentes Fijas	Residencial	Cambio Tecnológico	No
Incentivo al recambio de artefactos de calefacción	Fuentes Fijas	Residencial	Cambio Tecnológico	No
Ampliación del D.S. 100 № MINAGRI a todas las comunas bajo saturación.	Fuentes Fijas	Quemas Agrícolas	Cambio Tecnológico	Sí
Eliminación gradual de quemas	Fuentes Fijas	Quemas Agrícolas	Cambio Tecnológico	Sí
Prohibir la venta de leña no certificada en meses de invierno	Fuentes Fijas	Residencial	Programa	No
Prohibición de la quema al aire libre, en la vía pública o recintos privados, de hojas secas, restos de podas, y todo tipo de desperdicios	Fuentes Fijas	Quemas	Programa	No
Campañas Educacionales	No aplica	No aplica	Programa	No

Fuente: Elaboración propia en base a (Universidad de Concepción 2009)

Como se aprecia en la tabla anterior, todas aquellas medidas que no corresponden a programas son incluibles al modelo genérico, exceptuando la medida asociada a la norma de emisión para artefactos de uso residencial (leña)⁹ y a la que hace referencia al recambio de artefactos de calefacción. Éstas serán incluidas al modelo como un cambio de

⁹ A pesar de que esta medida debe considerarse como línea base ya que la normativa ya existe, se incluirá como medida (pero sin implicar costos) para aplicar la reducción de emisiones en caso de que la línea base ingresada al modelo no la tenga incluida.

os. Ción o Cida

equipo específico (tipo) a equipo que cumple la normativa. Además, el subsidio o incentivo por parte del Estado debe modelarse de manera independiente a la medida, influyendo este incentivo en el grado de penetración de la medida.

4.2.1.10 Otros no asociados directamente a PDA o PPA

4.2.1.10.1 Medidas de Aislación Térmica

Adicional a la revisión de medidas contenidas en los PDA y PPA nacionales que ha sido discutida en las secciones anteriores, a continuación se incluye también, una revisión específica de las medidas que comúnmente forman parte de los programas de aislación térmica. Esto último es con el objetivo de incluir al modelo toda medida o programa relacionado con aislación térmica de una manera más eficiente y que los resultados sean consistentes para todas las zonas del país.

El Ministerio de Vivienda y Urbanismo desarrolló el estudio "Programa de Inversión Pública para Fomentar el Reacondicionamiento Térmico del Parque Construido de Viviendas" (Ambiente Consultores & PRIEN 2007) en donde se evaluaron diferentes medidas de aislamiento térmico según tipología de vivienda y zonas térmicas de Chile. La manera de realizar esta evaluación fue según escenarios de inclusión de estas medidas.

Las mejoras en aislación térmica consideradas en el documento recién mencionado son las siguientes:

- ✓ Sellado de Infiltraciones
- ✓ Mejoramiento de complejo techumbre
- ✓ Mejoramiento de Envolvente en Muros
- Mejoramiento en Ventanas
- Mejoramiento de pisos ventilados

Cada una de estas medidas incluye una evaluación económica de los materiales necesarios como también del flete de los materiales y la instalación misma.

El Departamento de Economía Ambiental del Ministerio de Medio Ambiente utilizó esta información y replicó de manera diferente la evaluación de estas medidas (Ministerio de Medio Ambiente 2012). En este caso lo que se hizo fue evaluar cada una de las alternativas de manera independiente, llegando así a resultados de reducción de la necesidad de calefacción y su costo asociado, todo esto según tipología y zona térmica.

El consultor considera que es una buena manera de incluir estas medidas específicas al modelo genérico. De todas maneras, estas pueden sufrir modificaciones en la modelación no replicando en un 100% lo realizado por el Ministerio de Medio Ambiente. Todas estas modificaciones serán conversadas al momento de diseñar la modelación.

4.2.1.10.2 Listado de Medidas Generadas en Taller Realizado en Temuco

Con el objetivo de ahondar en la revisión de medidas de reducción de emisiones asociadas a la calefacción residencial y su relación con el uso de leña, es que se agrega a esta revisión exhaustiva, los resultados generados luego de la realización de un taller en la ciudad de Temuco.

El taller realizado los días 6 y 7 de Septiembre del 2012 fue desarrollado con el objetivo de compartir y analizar las posibles medidas que deben ser incluidas en los futuros PDA y PPA en las ciudades que tienen como principal fuente de contaminación la calefacción residencial con leña. Participaron de este los SEREMIS de Medio Ambiente de las regiones de la zona centro y sur del país, junto a profesionales de diferentes divisiones y oficinas del MMA (División de Calidad del Aire y otras).

Uno de los resultados de este taller correspondió a un amplio listado de medidas y programas factibles de implementar para reducir las emisiones asociadas a calefacción residencial, el cual fue proporcionado por la contraparte técnica del presente estudio. Este listado se analizó y consolidó entregando un listado final de medidas y programas que se presentan en las siguientes tablas.

Tabla 4-16 Listado de medidas resultantes luego de la realización del taller en Temuco

Alcance	Medida				
Aislación	Aislación térmica en viviendas existentes				
Térmica	Exigencia de mayor estándar de aislación térmica en viviendas nuevas				
Calefacción Distrital	Proyectos inmobiliarios con calefacción distrital				
	Compensación de emisiones para proyectos inmobiliarios				
Combustible	Exigencia de calefacción limpia o eficiente según el valor de la vivienda				
General	Exigencia de tecnologías alternativas a nuevos proyectos inmobiliarios				
General	Net Metering en calefacción				
	Norma de Emisión para Viviendas, Centros Comerciales, Edificios Públicos				
	Cambio de combustible leña por pellets en instituciones públicas y privadas				
	Congelamiento del parque de calefactores				
	Instalación de sistemas de abatimiento en calefactores a leña				
	Norma leña húmeda				
Combustible	Prohibición de uso de calefactores a leña según algún criterio (GEC, antigüedad, tipo, tamaño vivienda, costo vivienda, viviendas nuevas, todos)				
Leña	Prohibición de utilización de leña en instituciones públicas, comerciales y hospitales				
	Prohibir la utilización de leña				
	Recambio de calderas en instituciones públicas, comerciales y hospitales				
	Recambio de calefactor por uno más allá de la norma				
	Recambio de cocinas a leña por cocinas a gas				

Fuente: Elaboración propia en base a antecedentes entregados por la contraparte técnica.

Todas estas medidas son de alguna manera aplicables al modelo genérico teniendo ciertas consideraciones al momento de diseñar la modelación, las cuales ya han sido mencionadas en las secciones anteriores.

Tabla 4-17 Listado de programas complementarios resultantes luego de la realización del taller en Temuco

Alcance	Programa Complementario resultantes luego de la realización del taller en Temuco Programa Complementario			
Alcalice	·			
	Incentivos para la aislación térmica y recambio de calefactores (hipotecario, contribuciones, impuestos, etc.)			
Aislación Térmica	Modificación zonas térmicas			
	Subsidio para la aislación térmica y recambio de calefactores de viviendas			
	existentes			
Calefacción				
Distrital	Incentivo a la calefacción distrital (tributario, sin compensación, etc.)			
Combustible	Incentivos a la utilización de combustibles limpios			
General	Promoción de biocombustibles			
	Subsidio al gas			
Etiquetado	Certificación energética de viviendas - Etiquetado			
Viviendas	Exigir evaluación de eficiencia energética cuando haya compra venta			
	Campaña educativa de eficiencia energética y utilización de leña			
	Difusión de resultados de las medidas			
	Fortalecimiento de herramientas comunicacionales			
	Generación de conocimientos (malla curricular, centro de investigación y			
General	desarrollo estatal de temas de leña)			
	Incentivos para la aislación térmica y recambio de calefactores (hipotecario,			
	contribuciones, impuestos, etc.) Sensibilización ciudadana			
	Subsidio para la aislación térmica y recambio de calefactores de viviendas existentes			
	Capacitación y apoyo a pequeños y medianos empresarios de la leña			
	Disponer de medidores de humedad para los consumidores			
	Educación Leña			
	Etiquetado Calefactores			
	Etiquetado Leña			
	Fiscalización de emisiones residenciales			
	Fiscalización leña por la SEC			
	Fomento a la asociación de productores pequeños			
Combustible	Fomento e incentivo para tecnologías de secado			
Leña	Fomento e incentivo para tecnologías de secado y diseño de un modelo de			
20.10	negocios			
	Generación de conocimientos (malla curricular, centro de investigación y			
	desarrollo estatal de temas de leña)			
	Impuesto a la leña según algún criterio (familias acomodadas, otros)			
	Monitoreo de precio y calidad de la leña			
	Programas de recambio de calefactores (subsidios, incentivos, educación)			
	Registro de calefactores			
	Registro de comerciantes y productores de biomasa vegetal			
	Subsidio a comerciantes y productores de biomasa vegetal			

Fuente: Elaboración propia en base a antecedentes entregados por la contraparte técnica.

Como se ha mencionado con anterioridad, todo lo que corresponde a programas complementarios debe ser modelado independientemente, asociándolos si es que aplica, a un aumento en la penetración y/o efectividad de alguna medida especifica.

4.2.2 Planes Internacionales

Para obtener medidas de mitigación de experiencias internacionales se revisaron dos tipos de fuentes: 1) estudios sobre planes de gestión de la calidad del aire y 2) modelos de estimación de reducción de emisiones, costos y beneficios. Para el primer caso, y el que se presentará a continuación, se revisaron las siguientes fuentes de información, con la finalidad de recopilar medidas adicionales e innovadoras:

- Plan de Gestión de Calidad de Aire del South Coast Air Quality Management District (SCAQMD) en EE.UU.
- Plan de Gestión de Calidad de Aire de Perth, Australia
- Un estudio de D'Elia, Bencardino et al. (2009) analizando medidas técnicas y notécnicas para la reducción de contaminación atmosférica en Italia.
- Un estudio realizado por un grupo de expertos en calidad de aire para DEFRA (2007) que aconseja sobre la gestión de la contaminación atmosférica y el cambio climático en el Reino Unido.
- Un reporte realizado por la oficina de medio ambiente de Waikato (Nueva Zelandia), evaluando costo-efectividad de opciones de política para gestionar la calidad atmosférica. Aun cuando Nueva Zelandia es considerado un país limpio en términos de calidad ambiental, presenta problemas en algunas zonas relacionados principalmente con la calefacción en base a leña.

En general, a diferencia de lo que se verá en el análisis de modelos revisados (sección 4.3), no existe información directa con respecto a los costos y eficiencias de reducción asociados. En otros casos, se presentan más bien estrategias de control (e.g. normas de emisiones más estrictas), cuyo éxito se asegura con un conjunto de medidas de control (no presentadas en detalle). Finalmente, sucede en algunos casos que las medidas presentadas, como por ejemplo en el Plan de Gestión de Calidad de Aire del SCAQMD, provienen en su mayoría de modelos existentes para el país (en este caso EE.UU.), como lo son el modelo CoST o su precursor Air Control NET. Lo mismo sucede para el caso de Europa.

4.2.2.1 SCAQMD

El SCAQMD prepara de manera periódica planes de gestión de calidad de aire tanto para cumplir con los requerimientos federales o para incorporar la información técnica más reciente. De esta manera, cada plan es una actualización de su predecesor. El Plan de Gestión de Calidad de Aire de SCAQMD del año 2012 presenta distintos grupos de medidas según los tipos de fuentes (fuentes fijas puntuales y areales, y fuentes móviles) y

objetivos del plan. En general se presentan estrategias de control las cuales son llevadas a cabo por un conjunto de métodos o tecnologías de control existentes o en proceso de ser creados o diseñados (e.g. en algunos casos se habla de tecnologías de baja emisión, y existe financiamiento para investigar nuevas tecnologías).

Para el caso de las fuentes fijas, se presentan estrategias tanto de corto plazo para reducción de MP2,5 como estrategias de adopción temprana para el cumplimiento de la norma de ozono y que de manera paralela producen reducción de material particulado.

Las estrategias de corto plazo de MP2,5 son:

- Mayor reducción de NO_X en instalaciones industriales (instalaciones RECLAIM¹⁰)
- Mayor reducción de MP2,5 de equipos residenciales en base a leña, quemas abiertas, y parrillas
- Medidas para fuentes indirectas para emisiones de puertos o fuentes asociadas a puertos (para reducción de MP2,5, NO_X y SO_X)
- Programas de incentivos económicos para adoptar equipamiento más limpio y eficiente
- Reducción de barreras para permisos para la fabricación de tecnologías de cero o casi cero emisión
- Reducción de contaminantes criterio mediante educación, difusión e incentivos
- Evaluación de todas las medidas factibles (en este caso, se deja el espacio abierto para evaluar medidas e incorporarlas en el transcurso del plan)

Las estrategias recomendadas para cumplimiento de la norma de ozono son¹¹:

- Mayor reducción de emisiones de rellenos sanitarios y llamaradas de tratamiento de desechos
- Mayor reducción de emisiones por calefacción de espacios comerciales

Para el caso de las fuentes móviles, se presentan medidas para vehículos en ruta y fuera de ruta. En el caso de los vehículos en ruta, hay cuatro medidas que apuntan a acelerar el retiro de vehículos más contaminantes y aumentar la penetración de vehículos de baja o cero emisión. Ambos casos se aplican a vehículos livianos, medianos y pesados.

En el caso de los vehículos fuera de ruta, se consideran las siguientes estrategias:

 Mayor reducción de emisiones para locomotoras (transporte de pasajeros y carga) y embarcaciones (en viaje y en puerto)

¹¹ Se presentan solamente las estrategias que reducen (MP, NOx o SO₂). No se presentan estrategias ya mencionadas para la reducción de MP2,5 en el corto plazo.

¹⁰http://www.aqmd.gov/reclaim/reclaim.html

GreenLabUC

Gestión y Política Ambiental DICTUC S.A.

Extensión del financiamiento para adquisición de equipos para construcción y/o industria¹²

En los anexos (sección 8.5) se presenta un resumen de las estrategias de control además de los métodos o tecnologías recomendados para cada estrategia.

¹²http://www.aqmd.gov/tao/implementation/soonprogram.htm

4.2.2.2 Perth, Australia

El año 2000 se desarrolló un plan de gestión de la calidad del aire en Perth con la finalidad de mejorar y mantener el aire limpio en la región metropolitana durante los próximos 30 años. El plan de Perth delinea estrategias y programas enfocados al continuo mejoramiento de la calidad del aire (AQCC Perth 2012).

Cada año el Comité de Coordinación de Calidad de Aire (AQCC, por sus siglas en inglés) de Perth, publica un reporte con los avances de las iniciativas y programas implementados. El plan contiene 10 iniciativas, cada una compuesta por varios programas, los que se presentan a continuación:

Tabla 4-18 Iniciativas Plan de Gestión de Calidad de Aire Perth, Australia

Iniciativa	Programa
I1: Educación Comunitaria	P1: Revisar programas actuales de educación y cambio de comportamiento y establecer una estrategia y estructura para desarrollar e implementar programas de apoyo en el futuro
	P2: Mejorar el acceso de la comunidad a la información y programas de calidad de aire vía internet
	P3: Influenciar el comportamiento de viaje de la comunidad al implementar TravelSmart, trabajo a distancia y otras alternativas de viaje
I2: Reducción de Emisiones Vehiculares	P1: Desarrollar políticas y regulaciones para calidad de combustible, promover una regulación nacional de calidad de combustible alineada con la regulación internacional y coordinar las normas de calidad de combustible con las normas de emisión vehicular
	P2: Evaluar GLP y GNC como fuentes de combustible para pasajeros y carga
	P3: Evaluar opciones de medición de emisiones para introducir a Perth e implementar los resultados para reducir las emisiones vehiculares en servicio
	P4: Implementación de control en ruta de emisiones vehiculares excesivas
	P5: Evaluar e introducir medidas apropiadas para retirar vehículos antiguos
	P6: Entrenamiento en muestreo de emisiones, y revisión de equipamiento y tecnologías
	P7: Investigar la costo-efectividad de recuperación de vapor (Etapa II) y promoción en caso de ser costo-efectiva
	P8: Investigar el uso de vehículos eléctricos, ultra livianos y con combustibles alternativos
I3: Reducción de EmisionesIndustriales	P1: Evaluar contribución de NO_X y COR a la formación de smog en cuenca atmosférica de Perth
	P2: Evaluar la costo-efectividad de opciones de reducción de NO _X , e implementar opciones acordadas para reducir emisiones de fuentes significativas
	P3: Identificar y asistir a los mayores emisores de COR para reducir emisiones industriales, y fomentar el mejoramiento continuo de medidas ya incorporadas
	P4: Promover la conciencia de logros industriales en reducción de emisiones mediante premios de la "Industria Verde"
	P5: Asegurar planificación adecuada de la cuenca atmosférica para el desarrollo futuro de los sectores industriales y de generación eléctrica en la región metropolitana
I4: Investigación en Salud	P1: Investigar los impactos de la contaminación atmosférica en la salud pública
	P2: Investigar fuentes de contaminantes atmosféricos y su impacto en los residentes, al determinar los potenciales impactos en la salud de la variación diaria de calidad de aire
	P3: Desarrollo de una red de contaminación atmosférica y salud

Iniciativa	Programa
I5: Modelación y Monitoreo	P1: Actualizar y consolidar bases de datos de emisiones atmosféricas
	P2: Validar/mejorar estimaciones de emisiones para fuentes clave
	P3: Mejorar capacidad y precisión de modelación
	P4: Establecer un comité de monitoreo para evaluar temas de monitoreo de calidad de aire
	P5: Revisar prácticas y procedimientos de monitoreo de calidad de aire en Perth
	P6: Desarrollar programas de monitoreo futuro
	P7: Apoyar programas de información a la comunidad y educación en monitoreo de calidad de aire
I6: Calidad de Aire	P1: Desarrollar una red de calidad de aire intradomiciliaria
Intradomiciliaria	P2: Investigar la calidad de aire intradomiciliaria y la contribución de la exposición intradomiciliaria a la exposición personal
	P3: Aumentar la conciencia de la calidad de aire intradomiciliaria en la comunidad
I7: Uso de suelo y planificación de trasporte	P1: Incluir consideraciones de calidad de aire regional y local en la planificación estratégica y la implementación en el Perth del Futuro
	P2: Incluir consideraciones de calidad de aire regional y local en la planificación estratégica y la implementación de propuestas de desarrollo
	P3: Monitorear y revisar la efectividad de las decisiones de uso de suelo y planificación de transporte en su influencia sobre la calidad de aire de Perth
	P4: Asistir a los gobiernos locales en influenciar cambios positivos sobre el comportamiento de viaje de la comunidad.
l8: Reducción de Neblina	P1: Aumentar la conciencia de la comunidad de los impactos de estufas residenciales a leña sobre la calidad del aire
	P2: Aumentar la conciencia entre los proveedores de leña e instaladores de estufas de los impactos de estufas a leña sobre la calidad del aire
	P3: Resolución de humo domiciliario molesto ¹³
	P4: Gestión de disposición de residuos verdes y reciclaje para reducir la creación de neblina local
I9: Reducción de Emisiones de Pymes	P1: Fomento a la producción limpia
I10: Gestión del humo	P1: Establecer un grupo de conciencia sobre la gestión del humo para facilitar la educación de la comunidad y la información sobre los impactos del humo sobre quemas planificadas
	P2: Grupo de coordinación de gestión del humo
	P3: Regulación y política sobre gestión del humo
	P4: Investigación sobre gestión del humo

(AQCC Perth 2012)

¹³Es un programa que apunta a enmendar la legislación (*Health Act 1911*) para darle atribuciones a los oficiales para gestionar el humo molesto y generar procesos de mediación a través de la oficina de consejo ciudadano.

4.2.2.3 Italia

En Italia, los planes de gestión de calidad del aire más recientes destacaron la necesidad de implementar medidas no-técnicas, además de las medidas técnicas, para cumplir con los objetivos nacionales de reducción de emisiones (D'ELIA, BENCARDINO et al. 2009).

El documento revisado presenta un listado de todas las medidas técnicas y no-técnicas consideradas en los planes de gestión de calidad de aire en Italia, además de una modelación del impacto en la reducción de emisiones de NO_X, SO₂ y MP, como también del impacto en la salud de la población.

Se presentan medidas para los sectores de energía, residencial y transporte terrestre. No se incluye información de costos ni eficiencias de reducción. El listado completo de medidas se presenta en la Tabla 4-19.

En el caso del sector de energía, la mayoría de las medidas implica la instalación de sistemas de generación eléctrica y no implica un cambio en el comportamiento de los usuarios de electricidad. En el caso de la energía fotovoltaica, esta se considera mediante la instalación de paneles solares en las construcciones residenciales. En el caso de este estudio, las medidas incorporadas para este sector tienen una baja frecuencia de aplicación y por lo mismo un bajo impacto sobre la reducción de emisiones.

En el sector residencial las dos medidas que producen el mayor impacto sobre la reducción de emisiones son "Regulación del uso de biomasa, petróleo y carbón" y "Mejoras de eficiencia en chimeneas y estufas".

En el sector de transporte terrestre las medidas predominantes son no-técnicas. La medida que tiene un mayor aporte a la reducción de emisiones es "Incentivos para nuevos vehículos pesados a diesel" aun cuando fue adoptada solamente en algunas zonas. Por otro lado, una de las medidas más popularmente adoptada pero que produjo bajos niveles de reducción fue la aplicación de "zonas de baja emisión".

Tabla 4-19 Medidas Planes de Gestión de Calidad del Aire en Italia

Sector	Tipo de Medida
Energía	Fotovoltaica
	Eólica
	Hidroeléctrica
	Geotérmica
	Incineración de Desechos con Recuperación de Calor
	Planta de Calefacción Distrital
	Recuperación de Biogás en sectores agrícola y ganadero
Residencial	Calderas residenciales de alta eficiencia
	Eficiencia energética en construcción
	Medidor de calor residencial
	Bombas de calor
	Regulación del uso de biomasa, petróleo y carbón
	Mejoras de eficiencia en chimeneas y estufas
	Sistemas de calentamiento solar
	Incentivos para adoptar gas natural en calderas residenciales
Transporte	Zonas de baja emisión
Terrestre	Restricción del tráfico
	Cargo por emisión
	Vehículo compartido
	Límites de velocidad en autopistas
	Bicicleta compartida
	Incentivos para nuevos vehículos livianos
	Incentivos para nuevos vehículos pesados a diesel
	Filtro de partículas
	Incentivos para vehículos livianos a hidrógeno
	Nuevas estaciones de servicio de metano
	Incentivos para transporte público con biocombustibles
	Apertura de nuevas líneas de tren
	Apertura de nuevas líneas de tren subterráneo
	Ciclovías
	Cambio modal de vehículos livianos y camiones a barcos
	Inversión en buses (nuevos buses, extensión del servicio, aumento de la frecuencia)
	Racionalización de transporte de carga en áreas urbanas

Fuente: (D'ELIA, BENCARDINO et al. 2009)

4.2.2.4 Reino Unido

El año 2001 se armó el grupo de expertos de calidad de aire (AQEG, por sus siglas en inglés) con la finalidad de proveer asesoría con respecto a la calidad del aire para aquellos contaminantes contenidos en la Estrategia de Calidad del Aire (AQS, por sus siglas en inglés) de Inglaterra, Escocia, Gales e Irlanda del Norte, y aquellos cubiertos por la directiva de la Unión Europea sobre Evaluación y Gestión de la Calidad del Aire. (DEFRA 2007)

El Departamento de Medio Ambiente, Alimentos y Asuntos Rurales (DEFRA, por sus siglas en inglés) solicitó al AQEG que examinara la relación del cambio climático y la contaminación atmosférica y que identificara sinergias entre ambos. En dicho estudio, el AQEG presenta medidas de reducción de contaminantes, aportando a la mejora tanto de la contaminación atmosférica como el cambio climático.

• Generación Eléctrica:

- o Abatimiento de emisiones, generalmente mediante la desulfuración húmeda de gases o un depurador húmedo.
- Cambio de combustibles, especialmente de plantas de generación térmica a carbón hacia el uso de gas natural con tecnologías de abatimiento.
- Co-generación, que necesita una demanda por calor (industria o calefacción distrital).
- Gasificación integrada en ciclo combinado, produciendo una combustión más eficiente del carbón.
- Bioenergía, el uso de biomasa si bien tiene una reducción en las emisiones de gases de efecto invernadero produce un aumento en la emisión de contaminantes locales.

Residencial:

- o Cambio de combustible de carbón a gas natural
- Mejor aislación térmica
- o Eficiencia energética: mediante el uso eficiente de la energía (especialmente electricidad) se logra una importante reducción de emisiones tanto de impacto global como local. Sin embargo, tiene el revés que las emisiones no necesariamente se reducen en los lugares donde se genera el mayor impacto (o donde existe mayor población humana).

Transporte Terrestre:

- Abatimiento (e.g. catalizadores, filtro de partículas, SCR, etc.). Es necesario tener en cuenta que la aplicación de muchas tecnologías de abatimiento necesitan combustibles con menor contenido de azufre.
- o Combustibles con menor contenido de azufre. Esto tiene un impacto mayor, ya que abre la posibilidad a la posterior aplicación de nuevas tecnologías de abatimiento.
- Emulsión agua-diesel para vehículos que utilizan diesel.

Gestión y Política Ambiental DICTUC S.A.

- Vehículos híbridos
- o Cambios de combustible, por ejemplo hacía GNC o GLP
- \circ Biocombustibles, que aun cuando generan una menor emisión en términos de gases de efecto invernadero, parecieran producir mayores emisiones de NO_X y MP.
- Hidrógeno, usado directamente en la combustión o en celdas de combustible. La primera, produciendo bajas emisiones locales y la segunda produciendo solamente vapor de agua.
- o Gestión de la demanda, como por ejemplo el cargo en las zonas de alto tráfico, la declaración de zonas de baja emisión o la planificación urbana.
- Otras medidas, en donde destacan el cambio modal, cambio en el peso de los vehículos, normas de emisión más restrictivas o programas de chatarrización o renovación de vehículos antiguos.

En el estudio, no se presenta información con respecto a la potencial reducción de emisiones ni los costos asociados para cada una de las medidas.

4.2.2.5 Nueva Zelandia

Aun cuando la calidad del aire en Nueva Zelandia es considerada buena según los estándares de la OCDE, existen zonas que presentan una mala calidad principalmente por calefacción distrital en base a leña. En algunos días de invierno, la excedencia de los límites diarios alcanza un 55%, de acuerdo a mediciones realizadas durante siete años que identifican a las estufas a leña como el principal contribuyente a dichas emisiones (Environment Waikato 2008).

En un reporte realizado por la Oficina de Medio Ambiente de Waikato en Nueva Zelandia (Environment Waikato 2008), se compara la línea base de emisiones con dos escenarios: 1) regulación diseñada para retirar tecnologías no limpias, y 2) incentivos enfocados al fomento en la adopción de tecnologías limpias.

En el escenario de regulación se consideran las siguientes acciones:

- Prohibición de quemas abiertas
- Adhesión a las nuevas normas nacionales de diseño (< 1g MP10/kg leña) y normas de eficiencia térmica (> 65%) para estufas a leña
- Monitoreo y control

En el escenario de incentivos se consideran:

- Para aquellos residentes que realizaban quemas o utilizaban estufas a carbón antes del año 2000, se presentan incentivos financieros para remplazar dichas quemas por: estufas de baja emisión, estufas a pellets u otras tecnologías limpias como bombas de calor, calentador de noche (mediante almacenamiento), etc.
- Dueños que vivan en casa propia, optan a subsidio completo en la compra de un equipo nuevo para aquellos habitantes que tengan la tarjeta "Servicios de la Comunidad"
- Dueños de viviendas que arriendan, tienen un subsidio del 40% o 10 años sin interés
- Todos los demás optan a un subsidio de \$600 NZD, para remplazar su estufa antigua (pre-2000) o quema abierta con tecnologías nuevas.

Los costos tecnológicos utilizados se presentan a continuación:

Tabla 4-20 Costos Sistemas de Calefacción NZ

Sistema de Calefacción	Costo de Compra	Vida útil	Eficiencia	Mantención Anual	Operación	Potencia de Salida
	NZD	Años	%	NZD/año	NZD /100xkWh	kW
Eléctrico portátil	125	2	100	0	17.5	2.4
Bomba de calor	3,500	20	300	10	7.5	5
Estufa a leña	3,500	20	60	40	7	15
Estufa a pellet	4,000	20	80	40	8	10.5
Gas portátil	300	10	85	250	21	3.5
Gas de tubo	2,000	20	80	20	17	4
Calentador petróleo	125	5	100	0	17.5	2.4
Quemador multi- combustible	3,000	20	60	40	8	17
Quemas abiertas	4,500	50	15	40	25	2

Fuente: (Environment Waikato 2008)

El reporte no presenta eficiencias de reducción ni costos unitarios por tonelada reducida, sin embargo son medidas potencialmente aplicables para el caso chileno.

4.2.2.5.1 Gestión de la Calidad del Aire - Ciudad de Christchurch

La ciudad neozelandesa de Christchurch presenta problemas de calidad del aire desde la década del 30, asociando un 83% de las emisiones de MP10 a la combustión residencial. Esta situación, y sumado a que dentro de los principales motivos identificados del problema de calidad del aire de esta ciudad son las condiciones topográficas y las condiciones climáticas, hacen que sea un interesante caso de estudio por presentar características similares a las ciudades de Chile que presentan alta contaminación atmosférica.

Se realizó una recopilación de medidas y programas de incentivo que han sido implementados en esta ciudad en base a una presentación proporcionada por el Ministerio de Medio Ambiente (Felipe Mellado 2012) y con apoyo de otros documentos (Emily Wilton & Bob Ayrey , Ministry for the Environment New Zealand 2002) además de la información presente en la página web del Environment Canterbury Regional Council¹⁴. Las medidas y programas aplicados en esta ciudad se listan a continuación.

- ✓ Prohibición de instalación de chimeneas de hogar abierto.
- Restricción de instalación de calefactores a carbón y leña cuyas emisiones no fueran aprobadas por el Consejo Regional.

¹⁴http://ecan.govt.nz/advice/your-home/home-heating/Pages/home-heating-for-christchurch.aspx#caz1-solid

- Consumo de leña con una humedad inferior al 25%.
- ✓ Prohibición de uso de chimeneas de hogar abierto desde el 1 de abril al 30 de septiembre.
- ✓ Prohibición de uso de calefactores a leña existentes de antigüedad mayor a 15 años entre el 1 de abril al 30 de septiembre con la posibilidad de instalar una nueva chimenea autorizadas por el Council.
- ✓ Prohibición de instalación de calefactores a leña nuevos.
- ✓ Programa de incentivos para sustituir estufas de leña por otros sistemas de calefacción.
 - El programa de incentivos ofrece desde financiamiento del 100% del costo de los recambios en familias de menor nivel socioeconómico, hasta prestamos con 10 años plazo sin interés para recambios de sistemas de calefacción y aislación térmica
- Programa de Asesoría Personalizada para el Recambio de Equipo de Calefacción y Aislación Térmica.
 - El programa incluye una asesoría personalizada realizada por profesionales a cada uno de los postulantes, donde se les ayuda a elegir el mejor equipo de calefacción y las mejoras necesarias en aislación térmica para suplir las necesidades de calefacción de la vivienda.
- Plataforma web para conocer la antigüedad del calefactor a leña.

Todas estas medidas son aplicables al modelo genérico teniendo ciertas consideraciones al momento de diseñar la modelación. En particular, todo lo que corresponde a programas complementarios (incentivos, asesoría personalizada y plataforma web), debe ser modelado independiente de la medida específica, asociándole un aumento en la penetración y/o efectividad de la medida respectiva.

Los documentos revisados no presentan información de costos ni de eficiencia en la reducción de emisiones.

4.2.2.6 Resumen

A continuación un breve resumen sobre la efectividad que ha tenido la implementación de medidas en los distintos casos revisados.

En el caso del SCAQMD, la calidad de aire en California ha tenido una mejora sustancial en el tiempo. Sin embargo, en el caso de concentración de ozono existe una tasa de mejora decreciente, lo que produce una preocupación en la población local. La gran mejora que se ha producido desde la década de los 70, se debe directamente a la manera en que se han diseñado los distintos planes de gestión de calidad del aire, una estrategia de varios años considerando todos los tipos de fuentes emisoras de la zona. Todavía no se ha logrado un cumplimiento total de la normativa federal ni estatal. Esto se debe en parte a que, a pesar de que la calidad del aire ha ido mejorando con el tiempo, también la normativa se ha vuelto más exigente. Todavía en la actualidad, la calidad del aire de California se encuentra entre las peores del país.

En el caso de Perth, la publicación de reportes de las iniciativas implementadas (con una especie de *balance scorecard*), es posible apreciar el seguimiento de manera clara.

Tabla 4-21 Resumen Progreso de Iniciativas Perth AQMP

Iniciativa	Programa	Sin progreso	Con Progreso	Completado	Trabajo Futuro
	P1				✓
l1	P2		✓		✓
	P3		✓		✓
	P1		✓		✓
	P2			✓	
	Р3		✓		✓
12	P4		✓		✓
12	P5			✓	
	P6			✓	
	P7				✓
	P8		✓		✓
	P1		✓		
	P2	✓			
13	P3	✓			
	P4				✓
	P5		✓		✓
14	P1		✓		✓
	P2		✓		✓
	P3	✓			✓

Iniciativa	Programa	Sin progreso	Con Progreso	Completado	Trabajo Futuro
	P1		✓	✓	✓
	P2		✓		✓
	P3		✓		✓
15	P4				✓
	P5		✓		
	P6		✓		
	P7		✓		✓
	P1	✓			
16	P2	✓			
	P3	✓			✓
	P1		✓	✓	
	P2		✓		✓
17	P3		✓		✓
	P4		✓		✓
	P1		✓		✓
10	P2		✓		✓
18	P3		✓		✓
	P4				✓
19	P1		✓		✓
110	P1		✓		✓
	P2		✓		✓
	P3		✓		✓
	P4		✓		✓

Fuente: (AQCC Perth 2012)

No se indica en este caso un seguimiento a nivel de reducciones logradas por cada uno de los programas o iniciativas.

En el caso de Italia, en el documento revisado se hace mención expresa que para poder cumplir con los niveles de reducción de contaminación necesarios, es fundamental que las regiones además de implementar medidas técnicas de reducción de emisiones deban también lograr un cambio en el comportamiento de los individuos y las sociedades. Existe gran incertidumbre con respecto a los niveles de efectividad de las medidas, y no se ha hecho un análisis ex-post de la implementación de estas.

En el caso de Inglaterra, la gestión de la calidad del aire se realiza de manera local. De acuerdo a un reporte realizado el año 2010 para DEFRA, con la finalidad de evaluar el funcionamiento de la gestión local de la calidad del aire, se concluye que los problemas de contaminación atmosférica han continuado en el país. 58% de las autoridades han

GreenLabUC

Gestión y Política Ambiental DICTUC S.A.

declarado zonas de gestión de calidad de aire, sin embargo las medidas impulsadas a nivel local para atacar este problema han tenido un muy bajo impacto. Se sugiere que el Gobierno Central sea más claro en delinear o recomendar medidas a aplicar para combatir la contaminación del aire (Faulkner & Russel 2010).

Para el caso de Nueva Zelanda, de las opciones evaluadas en Environment Waikato (2008) ninguna permitía lograr un cumplimiento de la regulación al ser aplicadas de manera individual. Se recomienda que la mejor manera de cumplir con la mejora de la calidad del aire necesaria es utilizar tanto regulación como incentivos, y de esta manera aumentar el impacto de la medida. En el caso de la regulación, para lograr el cumplimiento de las metas es necesario incorporar además monitoreo, fiscalización y sanción.

4.3 Modelos Internacionales

A continuación se presenta un resumen de los modelos internacionales revisados, específicamente el Air Control NET¹⁵ y CoST¹⁶ de EE.UU. y el modelo GAINS¹⁷ de Europa.

4.3.1 AirControlNET

Air Control NET (ACN) es una herramienta de análisis de tecnologías de control desarrollado por E.H. Pechan & Associates, Inc. (Pechan) para la EPA de los EE.UU., para los análisis de política y regulación de contaminación atmosférica (Pechan 2006).

En términos gruesos, Air Control NET es un sistema de base de datos, en el que se relacionan tecnologías de control de contaminación con fuentes de emisión de los inventarios de emisiones de la EPA. La base de datos contiene información de la aplicabilidad de medidas de control, la eficiencia de reducción de contaminantes, además de los costos de implementación de dichas medidas.

El programa funciona en base a cuatro grandes módulos¹⁸:

- Módulo de Control de Escenarios: permite al usuario seleccionar medidas de control específicas desde una base de datos, para crear un escenario de reducción de emisiones. Los resultados, reducción de emisiones y costos asociados, pueden ser posteriormente exportados por el usuario.
- Módulo de costo mínimo: permite la obtención de un escenario de reducción a mínimo costo total.
- Módulo de construcción de script: permite que el usuario desarrolle "archivos de factores de control" basados en porcentajes de reducción de emisiones, para crear un escenario de reducción que sirva como dato de entrada para el modelo de calidad de aire REMSAD-ST.
- **Módulo de sensibilidad:** permite la variación de importantes parámetros que permitan determinar el impacto sobre los resultados totales.

El modelo ACN permite realizar análisis en distintos tipos de fuentes: estacionarias puntuales, areales, móviles y fuentes fugitivas. En el presente documento se describirán solamente aquellas medidas asociadas a fuentes móviles. Las demás, serán abordadas por el modelo CoST, descrito a continuación (sección 4.3.2).

¹⁸http://www.epa.gov/ttnecas1/AirControlNET.htm

¹⁵ http://www.epa.gov/ttn/ecas/AirControlNET.htm

¹⁶http://www.epa.gov/ttn/ecas/cost.htm

¹⁷http://gains.iiasa.ac.at/index.php/gains-europe

Gestión y Política Ambiental DICTUC S.A.

En las tablas a continuación (Tabla 4-22 y Tabla 4-23), se presentan los tipos de fuentes móviles consideradas en el modelo ACN y las medidas potencialmente aplicables, con una breve descripción de cada una. En los anexos (sección 8.2), se presenta un resumen de la información que caracteriza a las medidas de fuentes móviles, entre ellas el cambio porcentual de los contaminantes afectados (reducción y aumento) y los costos unitarios de aplicar cada medida.

Tabla 4-22 Tipos de Fuentes Móviles ACN

Tipo de Fuente	Categoría
En ruta	Vehículos Pesados - Diesel
	Vehículos Pesados – Gasolina
	Vehículos Livianos - Diesel
	Vehículos Livianos - Gasolina
	Motocicletas - Gasolina
Fuera de ruta	Vehículos a Diesel
	Vehículos a Gasolina
	Vehículos Todo Terreno
	Motocicletas
	Motos de Nieve

Fuente: (Pechan 2006)

Tabla 4-23 Medidas de Control Fuentes Móviles – AirControlNET

Categoría	Medida de Control	Descripción	
Vehículos en Ruta			
	Gasolina Reformulada (RFG)	Uso de gasolina reformulada por vehículos livianos, pesados y motocicletas.	
Motores a Gasolina	Presión de vapor Reid baja en estación de alto ozono	Uso de gasolina reformulada para tener un límite de 7.8 psi de presión de vapor Reid en aquellas zonas donde se excede.	
	RFG and High Enhanced I/M Program	Uso de gasolina reformulada + programa de inspección y mantenimiento reforzado	
Vehículos Pesados y Vehículos a Diesel	Norma de emisiones y control de azufre	Aplicación de normas de emisión a vehículos pesados + requerimiento de uso de diesel con bajo azufre	
	Programa Voluntario de Mejora: Biodiesel	Uso de biodiesel en reemplazo de diesel	
Vehículos Pesados a Diesel	Programa Voluntario de Mejora: Catalizador Oxidativo	Uso del catalizador oxidativo como tecnología de retrofit	
veriliculos Pesados a Diesei	Programa Voluntario de Mejora: Filtro de Partículas	Uso de filtro de partículas como tecnología de retrofit	
	Programa Voluntario de Mejora: Reducción Catalítica Selectiva	Uso de reductor catalítico selectivo como tecnología de retrofit	
Vehículos Livianos y Vehículos a Gasolina	Norma de emisiones y control de azufre Aplicación de norma de emisión Tier 2 + requerir gasolina con bajo contenido de azufre		
Vahíaulas Liuispas a Casalina	Inspección y programa de mantenimiento básico	Inspección y programa de mantenimiento básico	
Vehículos Livianos a Gasolina	Inspección y programa de mantenimiento reforzado	Inspección y programa de mantenimiento reforzado	
Vehículos Fuera de Ruta			
Vehículos a Diesel	Norma de emisiones	Aplicación de Normas Tier a vehículos fuera de ruta que usan diesel, incluyendo equipamiento ferroviario	
Vehículos a Gasolina	Norma de emisiones Aplicación de normas de emisión a motores con encendid grandes (> 25 HP). Se incluyen 2 tiempos, 4 tiempos, GLP		
Vehículos Todo Terreno	Norma de emisiones	Aplicación de normas de emisión a vehículos recreacionales todo terreno	
Motocicletas	Norma de emisiones	Aplicación de normas de emisión para motocicletas fuera de ruta	
Motos de Nieve	Norma de emisiones	Aplicación de normas de emisión para motos de nieve de 2 tiempos	

Fuente: (Pechan 2006)

4.3.2 CoST

CoST es un *software* desarrollado por la División de Impactos a la Salud y al Medio Ambiente (HEID, por sus siglas en inglés) de la EPA. Su función principal es modelar la reducción de emisiones y costos asociados a medidas de control aplicadas a fuentes puntuales, areales y móviles de contaminantes atmosféricos, para apoyar la toma de decisiones sobre las medidas de control, regulaciones y políticas públicas a implementar para enfrentar la contaminación atmosférica. Su objetivo es ayudar al análisis de múltiples contaminantes concentrados en EE.UU., a escala regional y/o nacional. CoST fue desarrollado para crear estrategias de control que asignen medidas de control a fuentes de emisión usando distintos tipos de algoritmos.

El CoST fue desarrollado como un remplazo del software ACN con mejoras en su funcionalidad, efectividad y transparencia para solucionar necesidades actuales. Ambas herramientas poseen la misma funcionalidad, pero CoST tiene nuevas capacidades como:

- ✓ Habilidad de insertar inventarios de emisión del Emissions Modeling Framework (EMF¹¹) con mucha exactitud.
- ✓ Habilidad para agregar nueva información de medidas de control.
- ✓ Mayor facilidad para usuarios en ver avance de análisis y resultados.
- ✓ Pasos para identificar errores en las emisiones y la información de medidas de control.²
- ✓ Amplio conjunto de medidas de control y factibilidad de aplicar medidas de control para fuentes móviles, en meses, temporadas o años.²¹

CoST fue desarrollado para ser aplicado a los contaminantes criterio del aire, todavía no es usado para contaminantes atmosféricos peligrosos y ha sido usado en análisis restringidos para gases de efecto invernadero. Entre los contaminantes que son afectados por las medidas de control, se consideran en el modelo MP2,5, MP10, NO_X , SO_2 , entre otros.

Con respecto a las fuentes de emisión sobre las que se pueden aplicar las medidas de control existe una clasificación según el sector. Esta considera las siguientes fuentes

²¹ En la actualidad no hay información disponible al público general con respecto a las medidas de control para fuentes móviles. Sí existe, de manera amplia, para fuentes estacionarias.

¹⁹Emissions Modeling Framework (EMF): es un sistema creado por la EPA para la administración y ejecución de complejas simulaciones en informaciones ambientales. Su objetivo es mejorar la puntualidad y calidad de la información usada en modelos de calidad del aire.

²⁰ Aquellos disponibles en el EMF: filtración de datos innecesarios, consistencia interna y calidad de la información, comparación de inventarios antiguos y nuevos, resolución de múltiples alcances y desagregaciones temporales.

generales: puntuales no agrupadas al IPM²², puntuales agrupadas al IPM, no puntuales (areales), móviles en ruta y móviles fuera de ruta. De igual modo se incorporan fuentes más específicas como: aviones, trenes, buques marinos, incendios (o quemas) identificados como fuentes puntuales, fuentes fugitivas de polvo y fuentes agrícolas. Asimismo, todas estas fuentes se etiquetan bajo un código llamado *Source Classification Code* (SCC), que se utiliza en inventarios de emisiones para diferenciar a las fuentes de emisión según el proceso industrial, químico o natural bajo el que se producen las emisiones. Existen alrededor de 11.000 códigos en los inventarios de EE.UU.

Para el funcionamiento de esta herramienta también se clasifican los tipos de medidas de control. Aquellas se separan según su grado de uso y su conocimiento en: emergentes, conocidas, hipotéticas u obsoletas.

Además de todos los parámetros nombrados anteriormente, se deben especificar otros que serán usados en el modelo, como: eficiencia de control de la medida, zona geográfica, tecnologías de control, tasa de descuento, expectativa de vida de la medida, entre otros.

Los costos son estimados de dos maneras: mediante la aplicación de un factor de "dólares por tonelada de contaminante reducido" cuando no existe información detallada sobre las fuentes y la otra es mediante ecuaciones de costo, cuando la disponibilidad de información es más amplia. Las ecuaciones se aplican a fuentes puntuales solamente, según lo detallado en la sección 8.3.3.

Todas estas características e *inputs* usados por el CoST son explicadas y descritas en la sección de anexos (sección 8.3)

4.3.3 GAINS

El *Greenhouse gas – Air Pollution Interaction and Synergies* (GAINS) es un *software* creado por IIASA²³ para identificar portafolios de medidas de control para la mejora de la calidad del aire y reducción de gases de efecto invernadero al menor costo posible, y de ese modo ayudar en la toma de decisiones de política pública relacionadas con la implementación de estrategias de descontaminación atmosférica dentro de Europa.

²³ IIASA: Es una organización internacional que se dedica a investigar en temas relacionados con la política y que son difíciles de resolver por un solo país o disciplina. Más información en http://www.iiasa.ac.at/

²²Integrated Planning Model (IPM): Es un modelo de programación lineal usado por la EPA, que sirve para estimar los costos y la reducción de ciertos contaminantes asociado a políticas relacionadas con el sector de generación eléctrica de EEUU.

El GAINS y su antecesor, el *Regional Air Pollution Information and Simulation* (RAINS), se han utilizado ampliamente para informar a los actores clave de las negociaciones de acuerdos sobre la contaminación del aire en Europa en los últimos años.

El modelo se enfoca en resolver problemas relacionados con la salud humana cuyos efectos son provocados por material particulado fino (MP_{2,5}) y ozono a nivel del suelo, daño en ecosistemas por acidificación, deposición excesiva de nitrógeno (eutrofización) y exposición a niveles elevados de ozono, como también sobre el forzante radiativo²⁴ a largo plazo. Estos impactos son generados por una gran variedad de contaminantes, como lo son el SO₂, NO_x, NH₃, COV no metánico, MP_{2,5} y MP₁₀. Además, se consideran 6 gases de efecto invernadero que fueron incluidos en el Protocolo de Kioto: CO₂, CH₄, N₂O, HFC₅, PFC₅ y por último el SF₆.

Bajo la "Convención Transfronteriza de la Contaminación del Aire a Largo Plazo" el modelo GAINS es usado para informar en las negociaciones de la revisión del Protocolo de Gotemburgo²⁵. Para este propósito se hace una proyección para 43 países de Europa (la mayoría perteneciente a la UE) de su desarrollo económico y su legislación progresiva de medidas de control.

El modelo involucra distintos aspectos como estimación de emisiones, tipos de medidas de control y sus costos, dispersión atmosférica, impactos a la salud, impactos en la calidad del aire, incertidumbre, entre otras cosas. La forma en que GAINS los incorpora y los utiliza se detalla en la sección de anexos (sección 8.4), en donde se explica de forma generalizada la metodología usada por GAINS para estimar la reducción de emisiones locales al menor costo posible.

²⁵ Protocolo de Gotemburgo: Aprobado por la Convención Transfronteriza de la Contaminación del Aire a Largo Plazo el año 1999 para disminuir los niveles de acidificación, eutrofización y el ozono troposférico para cada parte. Se fijó la cantidad máxima de emisiones para los precursores de tales problemas ambientales: SO₂, NO_x, COV y NH₃.

²⁴ Forzante Radiativo: Es el cambio en el equilibrio entre la radiación que ingresa y la radiación que sale de la atmósfera.

5. Medidas Incluidas en el Modelo

A partir de la recopilación y listado de medidas presentado en el archivo Excel adjunto (PDA-ListadoAmpliadoMedidas-Consolidado.xlsx), se realizó un trabajo final de consolidación de medidas y programas complementarios junto con un análisis de clasificación y priorización de estas que permitiera posteriormente facilitar la modelación.

El consolidado final entregó como resultado un listado de 67 medidas y 21 programas complementarios que permiten aumentar la efectividad y/o penetración de alguna medida específica, repartidos según los diferentes tipos de fuente, resumen que se muestra en la siguiente tabla.

Tabla 5-1 Distribución de Medidas y Programas Complementarios del Listado Consolidado de Medidas Potenciales a Incluir

1 Otenicales a miciali					
Tipo de Fuente	Medidas	Programas Complementarios	Total		
Fuentes Fijas	45	17	62		
Fuentes Fugitivas	5	-	5		
Fuentes Móviles	15	3	18		
Áreas Verdes	1	-	1		
Otras		1	1		
Total	67	21	88		

Fuente: Elaboración propia

Adicionalmente, cada una de las medidas posee distintas opciones de abatimiento (tecnologías o métodos).

Las medidas incluidas en el listado consolidado, fueron priorizadas para la inclusión al modelo. Además se realizó un análisis y categorización de las medidas según tipologías, lo que permitirá, al momento de modelar cada medida, seguir patrones comunes.

El detalle del listado consolidado de medidas junto con su priorización y análisis de tipologías se presenta adjunto a la entrega (PDA–Medidas a Evaluar.xlsx). A continuación se presenta un análisis más detallado del trabajo realizado junto con la especificación de las medidas a incluir en el modelo según tipo de fuente.

5.1 Análisis de Tipologías de Medidas

Para una mejor aproximación a la modelación de la reducción de emisiones de distintas medidas de abatimiento, se categorizó cada medida según la variable o parámetro que es modificado para estimar las emisiones finales. Las variables consideradas son:

- Nivel de Actividad (NA)
 - o Parque
 - o Actividad Unitaria
- ✓ Factor de Emisión (FE)
 - o Tecnología
 - o Combustible
- Penetración
- Efectividad

5.1.1 Estimación de emisiones

En términos generales, la estimación de emisiones se realiza con las siguientes ecuaciones:

$$Em_e^c = \sum_s (NA_{e,s} \times FE_{e,s}^c)$$

$$NA_{e,s} = Parque_{e,s} \times A_unit_{e,s}$$

Donde:

- Em^c_e Emisión de contaminante c en el escenario e
- NA_{e.s}: Nivel de actividad del servicio **s** en el escenario **e**
 - o Parque_{e.s}: parque emisor, que realiza el servicio **s** en el escenario **e**
 - o A_unit_{e,s}: nivel de actividad unitario del servicio s en el escenario e
- FE^c_{e,s}: Factor de emisión del contaminante c por el servicio s en el escenario e

Todas las variables dependen del escenario (e) a evaluar existiendo a lo menos dos escenarios: caso base (sin PDA) y caso con medida (o caso con PDA).

La reducción de emisiones estará dada por lo tanto por la diferencia en emisiones entre un escenario con medida (o PDA) y un caso base:

$$Red_Em^c = Em^c_{PDA} - Em^c_{Rase}$$

Donde.

- Em^c_{PDA} Emisión de contaminante **c** en el escenario con **PDA**
- Em^c_{BASE} Emisión de contaminante c en el escenario BASE
- Red Em^c Emisión de contaminante **c**

Equivalentemente, la reducción de emisiones para una medida m también se podrá estimar aplicando la efectividad de la medida y la penetración, a un cambio tanto en el

parque, el factor de emisión o el nivel de actividad de dicho parque, producto de la aplicación de dicha medida:

$$\begin{aligned} Red_Em_m &= \Delta Parque_m \times FE \times NA \times Ef_m \times Pen_m \\ o \\ Red_Em_m &= Parque \times \Delta FE_m \times NA \times Ef_m \times Pen_m \\ o \\ Red_Em_m &= Parque \times FE \times \Delta NA_m \times Ef_m \times Pen_m \\ \end{aligned}$$

Donde:

- Red_Em_m: Reducción de emisiones por la implementación de una medida m
- Parque: parque emisor
- ΔParque_m: cambio en el parque emisor por la implementación de la medida m
- FE: factor de emisión
- ΔFE_m : cambio en el factor de emisión por la implementación de la medida m
- NA: nivel de actividad
- ΔNA_m: cambio en el nivel de actividad por la implementación de la medida m
- Ef_m: Eficiencia de la medida *m*
- Pen_m: Penetración de la medida *m*

La efectividad y penetración de cada medida son específicas a las distintas medidas y zonas en las que se aplicaría un PDA o PPA. La implementación de programas podrá tener un impacto en el aumento de dichas variables.

5.1.2 Definición de tipología de medida

Las ecuaciones presentadas anteriormente, definen que la manera en que una medida implementada produce una reducción de emisiones se encuentra acotada a un cambio en alguno de los siguientes parámetros: nivel de actividad, factor de emisión, penetración o efectividad.

A su vez, cada medida afecta a una variable específica; si afecta al nivel de actividad, esta puede afectar al parque o al nivel de actividad unitario, mientras que si afecta al Factor de Emisión, puede afectar la tecnología o el combustible utilizado. Otro caso es que se produzca un impacto en la penetración o efectividad de la medida.

Por otro lado, existe otro grupo de medidas o programas, que no necesariamente modifican las variables unitarias, pero sí tienen un impacto en el nivel de penetración y efectividad de una medida.

Según lo anterior, es posible definir tipologías de medidas, según la variable que es afectada:

Tabla 5-2 Definición de Tipologías de Medidas

Parámetro	Variable afectada	Tipo de Medida
Nivel de	Parque	1. Restricción al crecimiento del parque
Actividad	Actividad unitaria	2. Restricción al nivel de actividad
Factor de Emisión	Tecnología	3. Nueva tecnología4. <i>Retrofit</i> tecnología existente5. Abatimiento <i>end of pipe</i>
	Combustible	6. Mejora de combustible7. Cambio de combustible
Otro	-Penetración -Efectividad	8. Aumento penetración/efectividad

Fuente: Elaboración propia

Cabe destacar que una medida que afecta en primera instancia a una variable en particular, puede concadenar que se modifique otra variable a su vez. Por ejemplo, la medida "Congelamiento del parque de calefactores a leña" la cual afecta inicialmente a la variable "parque" genera un cambio en el factor de emisión a través del cambio de combustible y a su vez la utilización de nueva tecnología. Al momento de clasificar las medidas (ver siguiente sección y documento PDA–Medidas a Evaluar.xlsx) se procuró discernir en el principal objetivo de la medida, independiente de que concadene otras modificaciones.

5.2 Listado de Medidas

Como se comentó anteriormente, el listado final de medidas contempla un listado de 67 medidas divididas según tipo de fuente, subtipo de fuente y categoría, las cuales se vieron analizadas en un proceso de priorización para la selección final de aquellas que serán incluidas en el modelo.

La priorización de éstas se realizó principalmente en base a dos criterios:

- 1) Participación de emisiones de los tipos de fuente, sub tipo y/o categoría a los cuales está asociada la medida.
- 2) Factibilidad de implementación de la medida.

Con estos criterios se asignó a cada medida un nivel de importancia; (1) muy importante, (2) medianamente importante, y (3) poco importante. Se tomó en cuenta también la justificación de realización del presente estudio, el cual nace del proceso de declaración de zona saturada para MP_{2,5} en Rancagua, Concepción, Talca-Maule, Chillán, Temuco y

Padre las Casas, y Osorno; todas ciudades del sur del país, en donde la participación en las emisiones del sector residencial producto a la utilización de leña para calefacción es muy relevante.

El listado completo de medidas junto con la definición del nivel de importancia que se le asignó puede apreciarse en el documento adjunto PDA—Medidas a Evaluar.xlsx.

Se ha considerado suficiente incluir al modelo toda aquella medida con nivel de importancia (1) y (2), lo cual entrega una distribución de medidas según fuente, sub tipo y categoría que es acorde con los criterios y consideraciones establecidas. Cabe destacar que adicionalmente, cada una de las medidas posee opciones (tecnologías) de abatimiento las cuales también están incluidas en el modelo. Mayores detalles de la modelación conceptual de las medidas incluidas en el modelo se puede apreciar en el documento "PDA-Manual".

A continuación se presenta el listado final de medidas incluidas en el modelo genérico.

Tabla 5-3 Listado de Medidas Incluidas en el Modelo Genérico

Tipo de Fuente	Subtipo de Fuente	Categoría /Sector	Medida
	Puntuales	Industrial	Norma de Emisión Fuentes Industriales (modelaciones independientes según nivel de información que se tiene de base) Compensación de emisiones en algún % Congelamiento de emisiones Meta contaminante (XX% de emisiones del año YYYY) Monitoreo continuo de emisiones para MP10, SO ₂ y NO _X
Fuentes Fijas	Areales	Residencial	Prohibición de comercialización y utilización leña húmeda Recambio de artefactos antiguos de calefacción Norma de calefactores a leña (más exigente a la actual) Congelamiento del parque de calefactores a leña Congelamiento del parque de cocinas a leña Instalación de filtros catalíticos en calefactores Límite de Emisiones en viviendas Reducción de emisiones por una mejora en la operación de calefactores Subsidio a otros combustibles distintos a la leña Prohibición de Chimeneas Prohibición de uso de calefactores a leña (según distintos criterios: viviendas existentes / nuevas, tamaño de la vivienda, máximo 1 artefacto a leña por vivienda, prohibición gradual según tecnología, permanente /GEC) Prohibición de uso de cocinas a leña (permanente /GEC) Recambio tecnológico de cocinas Norma de cocinas a leña Recambio calderas a leña Reacondicionamiento térmico de viviendas existentes

Tipo de Fuente	Subtipo de Fuente	Categoría /Sector	Medida
			Exigencia de mayor estándar de aislación térmica en viviendas nuevas
			Control de Emisiones en Sistemas de Calefacción Proyectos Inmobiliarios (según distintas tecnologías; Calefacción Distrital según distintos combustibles, Bombas de Calor)
		Quemas	Prohibición de Quemas (Superficie Autorizada, meses específicos)
	Construcción y Demolición		Reducción de Emisiones Fugitivas en Sitios de Construcción
	Preparación d Terrenos Agrícolas	Areales	Reducción de Emisiones Fugitivas en Agricultura
Fuentes	Minería		Reducción de Emisiones Fugitivas en Minería
Fugitivas	Crianza de Animales	Areales	Medidas de reducción de NH3
	Polvo Resuspendido	Calles Pavimentadas	Reducción de Emisiones Fugitivas en Calles Pavimentadas (Programa de Aspirado de Calles)
		Calles sin Pavimentar	Pavimentación de Calles
	En Ruta	Todos	Norma de Emisiones (Euro) para Fuentes Móviles en Ruta
			Renovación vehicular
			Recambio de Buses
			Congelamiento de emisiones
			Restricción Vehicular (permanente / GEC)
Fuentes			Aumento del Uso de Transporte Público (a través de un
Móviles			subsidio al transporte público y a través de impuesto a la gasolina y diésel).
			Impuesto a combustibles
			Construcción de Ciclovías Urbanas
	Fuera de Ruta	Todas	Norma de Emisiones (Euro) para Fuentes Móviles Fuera de Ruta
	Áreas Verdes	Áreas Verdes	Arborización Urbana
General	Todas	Todas	Especificaciones a los combustibles (combustibles con menor
General			contenido de azufre). Afecta a combustibles del sector
			industria, residencial y transporte.

Fuente: Elaboración propia

En las secciones siguientes, se presenta, según tipo de fuente, las medidas seleccionadas para su inclusión al modelo según el análisis de tipología de medida (ver Sección 5.1.2). La medida Arborización Urbana no se incluye en las siguientes secciones por no aplicar a ninguna de las tipologías identificadas.

5.2.1 Fuentes Fijas

En fuentes fijas se encuentran las categorías de fuentes industriales, residenciales, públicas y quemas. A continuación el análisis según tipología de medida para cada una de ellas.

Tabla 5-4 Clasificación según Tipología de Medida para el Sector Industrial

Tabla 5 T clashication segan ripologia ac meana para el sector maastrai				
Parámetro	Variable Afectada	Tipo de Medida	Medida	
	Tecnología	Nueva Tecnología	Norma de Emisión Fuentes Nuevas	
Factor de Emisión		Abatimiento <i>End Of Pipe</i>	Norma de Emisión en Fuentes Existentes	
	Combustible	Mejora de combustible	Especificaciones a los combustibles (combustibles con menor contenido de azufre)	

Fuente: Elaboración propia

A esta tabla se agregan las siguientes medidas que no es posible clasificarlas según tipología y que merecen un tratamiento especial.

- ✓ Compensación de emisiones en algún %
- ✓ Congelamiento de emisiones
- ✓ Meta Contaminante (XX% de emisiones del año YYYY)
- Monitoreo continuo de emisiones para MP₁₀, SO₂ y NO_X

Tabla 5-5 Clasificación según Tipología de Medida para el Sector Residencial

Parámetro	Variable Afectada	Tipo de Medida	Medida
	Parque	Restricción al	Congelamiento del parque de calefactores a leña
		Crecimiento del Parque	Congelamiento del parque de cocinas a leña
Nivel de			Prohibición de uso de calefactores a leña
Actividad	Actividad	Restricción al Nivel de	Prohibición de Chimeneas
	Unitaria	Actividad	Prohibición de uso de cocinas a leña
			Límite de emisión para viviendas
	Tecnología	Nueva Tecnología	Recambio de artefactos antiguos de calefacción
			Nueva norma de calefactores
			Nueva norma de cocinas
			Recambio tecnológico de cocinas
			Recambio Calderas "Edificios"
Factor de Emisión			Exigencia de mayor estándar de aislación térmica en viviendas nuevas
EIIIISIOII			Control de Emisiones en Sistemas de Calefacción Proyectos Inmobiliarios
		<i>Retrofit</i> Tecnología Existente	Reducción de emisiones por una mejora en la
			operación de calefactores
			Instalación de Filtros Catalíticos para calefactores
			Reacondicionamiento viviendas existentes

	Combustible	Mejora de Combustible	Prohibición de Comercialización Leña Húmeda
			Utilización de combustibles de menor emisión
			Mejoras al combustible kerosene (menor
			contenido de azufre)

Fuente: Elaboración propia

La categoría "Quemas" solo cuenta con una medida; "Prohibición de Quemas Agrícolas" la cual afecta al parámetro "nivel de actividad" y a su vez a la variable "actividad unitaria" por lo que corresponde al Tipo de Medida: Restricción al Nivel de Actividad.

5.2.2 Fuentes Fugitivas

Para fuentes fugitivas, todas las medidas seleccionadas corresponden a una tipología de medida "Retrofit Tecnología Existente", tal como se representa en la siguiente tabla.

Tabla 5-6 Clasificación según Tipología de Medida para Fuentes Fugitivas

Parámetro	Variable Afectada	Tipo de Medida	Medida
Factor de Emisión	Tecnología	<i>Retrofit</i> Tecnología Existente	Reducción de Emisiones Fugitivas en Agricultura Reducción de Emisiones Fugitivas en Calles Pavimentadas Reducción de Emisiones Fugitivas en Calles sin Pavimentar (pavimentación de calles) Reducción de Emisiones Fugitivas en Minería Reducción de Emisiones Fugitivas en Sitios de Construcción Reducción de emisiones de NH ₃ (aplicación de aditivos químicos)

Fuente: Elaboración propia

5.2.3 Fuentes Móviles

Finalmente, para fuentes móviles, la clasificación según tipo de medida se presenta en la siguiente tabla. Esta incluye tanto a fuentes móviles en ruta como fuera de ruta.

Tabla 5-7 Clasificación según Tipología de Medida para Fuentes Móviles

Parámetro Variable		Tipo de Medida	Medida	
· urumetro	Afectada	po de medida		
		Restricción al	Congelamiento del parque vehicular (para cada	
	Parque	Crecimiento del Parque	tipo de vehículo en ruta)	
Nivel de	rarque	Restricción al Nivel de Actividad	Renovación vehicular	
Actividad		Restricción al Nivel de Actividad	Restricción vehicular (permanente / GEC)	
	Actividad Unitaria		Aumento del uso de transporte público	
			Impuesto a los combustibles	
			Construcción de ciclovías urbanas	
	Tecnología	Nueva Tecnología	Norma de Emisiones (Euro) para Fuentes Móviles	
			en Ruta	
Factor de			Norma de Emisiones (Euro) para Fuentes Móviles	
Emisión			Fuera de Ruta	
EIIIISION			Recambio de Buses	
	Combustible	Mejora de Combustible	Especificaciones a los combustibles (combustibles	
		iviejora de combustible	con menor contenido de azufre)	

Fuente: Elaboración propia

5.3 Listado de Programas Complementarios

Los programas complementarios se han clasificado en la tipología 8 de medidas, la cual corresponde a toda aquella medida que directamente no afecta a la reducción de emisiones pero que sí permite que una medida específica aumente su efectividad o penetración. Dentro de esta categoría se consideran: incentivos (subsidios y/o impuestos), fiscalización, campañas de educación y sensibilización, etc.

Dependiendo de qué tan "fuertes" sean estos programas complementarios, la penetración y/o efectividad de la medida irá en aumento por lo que éstos, en la modelación, estarán vinculados a las respectivas medidas que estos afectan.

Todo aquel programa complementario identificado a lo largo de la revisión bibliográfica es incluido en el modelo. Adicionalmente, el usuario podrá incluir el que estime conveniente. A continuación se presenta el listado final de programas complementarios identificados.

Tabla 5-8 Programas Complementarios que serán incluidos en el modelo

Tipo de	Categoría	ategoría		
Fuente	/Sector	Alcance	Programa Complementario	
	Industrial	Industrial	Optimización del sistema de compensación de emisiones en la industria Programa de fiscalización	
		Aislación Térmica	Incentivos para la aislación térmica en viviendas existentes	
			Programa de asesoría para aislación de viviendas	
		Aislación Térmica / Calefacción a Leña	Etiquetado de viviendas	
			Exigencia de evaluación de eficiencia energética en	
			compra venta Programa de fiscalización	
		Calefacción a Leña	Fomento a la asociatividad de productores pequeños	
Fuentes	Residencial		Incentivos a la utilización de combustibles limpios	
Fijas			Incentivos para renovación de estufas/chimeneas a leña	
			Incentivos para tecnologías de secado de leña	
			Programa de fiscalización Venta de Leña Seca	
			Programa educativo: Aumento conciencia de impactos de estufas a leña y consumo de leña húmeda	
			Programa de educación sobre la mala operación de los calefactores	
			Registro de calefactores	
		Proyectos inmobiliarios	Incentivos a la tecnologías de control de emisiones en proyectos inmobiliarios	
	Quemas	Quemas Agrícolas	Programa de fiscalización	
	Todas	Todos	Programa de inspección y mantenimiento	
Fuentes			Promoción de biocombustibles	
Móviles		Transporte Público	Incentivos al transporte público (impuesto combustible / subsidio al transporte público)	
Todas	Todas	Todos	Fiscalización intensiva	

Fuente: Elaboración propia

6. Evaluación de Medidas, Establecimiento de Drivers y Ordenamiento según Costo Medio

Como ya se ha mencionado, el detalle de la evaluación de las medidas contenidas dentro del modelo genérico se encuentra en el documento anexo "PDA – Anexo Fichas". Cada medida posee una ficha asociada en la que se resumen las principales características y resultados de esta junto con todos los supuestos y parámetros necesarios para su evaluación. Estas fichas también incluyen los *drivers* que son necesarios de ingresar al modelo por el usuario y los parámetros que pueden ser modificados, pero que el modelo les asigna un valor por defecto.

Este último aspecto (drivers y parámetros generales y asociados a cada medida) se explican en detalle también en el Manual de Usuario del Modelo (ver "PDA – Manual – Final").

Debido a que los supuestos de modelación de las medidas contenidas en el Modelo Genérico y los drivers y parámetros necesarios para la evaluación se encuentran descritos en documentos anexos a este informe, no se repite esta información en el presente documento.

A continuación se presenta un ordenamiento según costo medio (general y según sector) de las medidas evaluadas dentro del modelo genérico.

6.1 Ordenamiento según Costo Medio

A partir de la evaluación de cada una de las medidas incluidas en el modelo, es que se puede realizar un ordenamiento de estas a partir de la costo-efectividad de estas (Millones de USD/(ug/m³)). A continuación se presentan las medidas evaluadas dentro del modelo genérico ordenadas según costo-efectividad para los resultados obtenidos en la zona de Temuco y Padre Las Casas²6. A primera vista parecería que las medidas difieran con las presentadas en el listado principal, pero simplemente corresponden a variaciones que tiene disponible el modelo.

²⁶ Para mayores detalles revisar el documento PDA – Temuco o la planilla Excel de resultados de este informe.

Tabla 6-1 Ordenamiento de Medidas según Costo-Efectividad

Tipo de Fuente	Medida	Costo Medio [MMUSD/(ugMP2.5/m3)]
Fuentes Móviles	Impuesto Combustibles	-604,988
Fuentes Móviles	Ciclovías	-57,552
Fuentes Móviles	Restricción Vehicular Permanente	-27,229
Fuentes Móviles	Congelamiento de Emisiones en Transporte	-202
Fuentes Fijas	Límite de Emisión Viviendas	-47
Fuentes Fijas	Viviendas Nuevas - Sellado de Infiltraciones	-42
Fuentes Fijas	Programa Mejora Operación Estufas	-33
Fuentes Fijas	Reacondicionamiento Térmico - Cielo - Viviendas: >= 650 UF	-32
Fuentes Fijas	Reacondicionamiento Térmico Viviendas Existentes >= 650 UF - Sellado de Infiltraciones	-32
Fuentes Fijas	Reacondicionamiento Térmico Viviendas Existentes < 650 UF - Sellado de Infiltraciones	-32
Fuentes Fijas	Reacondicionamiento Térmico - Cielo - Viviendas: < 650 UF Zona 5	-24
Fuentes Fijas	Instalación de Filtros Catalíticos	-23
Fuentes Fijas	Reacondicionamiento Térmico - Muro - Viviendas: < 650 UF Zona 5	-21
Fuentes Fijas	Leña Seca	-21
Fuentes Fijas	Quemas - Restricción Meses	-21
Fuentes Fijas	Reacondicionamiento Térmico - Muro - Viviendas: >= 650 UF	-21
Fuentes Fijas	Viviendas Nuevas - Nueva Norma - Zona 6	-19
Fuentes Fijas	Prohibición Leña Viviendas Existentes	-18
Fuentes Fijas	Prohibición Tenencia >1 Artefacto por Vivienda	-17
Fuentes Fugitivas	Preparación de Suelos Agrícolas	-15
Fuentes Fijas	Recambio Estufas 1 (calefactores a leña de mejor emisión)	-13
Fuentes Fijas	Norma Estufas	-13
Fuentes Fijas	Recambio Estufas 2 (calefactores a pellets)	-11
Fuentes Fugitivas Programa de Aspirado de Calles		-9
Fuentes Fijas	Subsidio a Combustible Calefacción – Pellets	-8
Fuentes Fijas	Norma Cocinas	-8
Fuentes Fijas	Prohibición Gradual Calefactores	-8
Fuentes Fijas	Recambio Cocinas	-8

Tipo de Fuente	Medida	Costo Medio [MMUSD/(ugMP2.5/m3)]
Fuentes Fijas	Congelamiento Parque Cocinas	-8
Fuentes Fijas	Prohibición Cocinas a Leña	-5
Fuentes Fijas	Subsidio a Combustible Calefacción - Gas Natural	-4
Fuentes Fijas	Reacondicionamiento Térmico Viviendas Existentes < 650 UF - Zona 5	0
Fuentes Fijas	Reacondicionamiento Térmico Viviendas Existentes >= 650 UF - Zona 5	1
Fuentes Fijas	Reacondicionamiento Térmico - Termopanel: Vidrio Doble Termopanel (3.6) - Viviendas: >= 650 UF	12
Fuentes Fijas	Reacondicionamiento Térmico - Termopanel: Vidrio Doble Termopanel (3.6) - Viviendas: < 650 UF	14
Fuentes Fijas	Sector Publico - Prohibición Leña	32
Fuentes Fijas	Congelamiento Parque Estufas	43
Fuentes Fijas	Puntuales - Congelamiento de Emisiones	44
Fuentes Fijas	Prohibición Leña Viviendas Nuevas	44
Fuentes Fijas	Puntuales - Compensación de Emisiones	55
Fuentes Fijas	Puntuales - Meta de Reducción de Emisiones	65
Fuentes Fijas	Reacondicionamiento Térmico - Piso - Viviendas: < 650 UF Zona 5	99
Fuentes Fijas	Reacondicionamiento Térmico - Piso - Viviendas: >= 650 UF	165
Fuentes Móviles	Norma Emisión Vehículos Pesados	268
Fuentes Fugitivas	Control Polvo Construcción de Edificios	375
Fuentes Móviles	Recambio de Buses	598
Áreas Verdes	Arborización Urbana	877
Fuentes Móviles	Renovación Vehicular	2,586
Fuentes Móviles	Subvención TP	641,335

Fuente: Elaboración propia. Se utiliza el valor presente del Costo Neto y las reducciones de concentración al año 2025 para obtener el Costo Medio.

A continuación, se muestran tablas para cada sector (para aquellos sectores que presentan más de una medida, por lo que se excluye Áreas Verdes y Quemas, dónde fue evaluada solo la medida de restricción por meses para Temuco y Padre Las Casas), en las cuales se ordenan las medidas según su costo-efectividad.

Tabla 6-2: Costo-efectividad Medidas de Fuentes Industriales

Medida	Costo Medio [MMUSD/(ug/m³)]
Puntuales - Congelamiento de Emisiones	44
Puntuales - Compensación de Emisiones	55
Puntuales - Meta de Reducción de Emisiones	65

Fuente: elaboración propia

Tabla 6-3 Costo-efectividad Medidas de Fuentes Móviles

Medida	Costo Medio [MMUSD/(ug/m³)]
Impuesto Combustibles	-604,988
Ciclovías	-57,552
Restricción Vehicular Permanente	-27,229
Congelamiento de Emisiones en Transporte	-202
Norma Emisión Vehículos Pesados	268
Recambio de Buses	598
Renovación Vehicular	2,586
Subvención TP	641,335

Fuente: Elaboración propia

Tabla 6-4 Costo Efectividad Medidas del Sector Residencial

Medida	Costo Medio [MMUSD/(ug/m³)]
Límite de Emisión Viviendas	-47
Viviendas Nuevas - Sellado de Infiltraciones	-42
Programa Mejora Operación Estufas	-33
Reacondicionamiento Térmico - Cielo - Viviendas: >= 650 UF	-32
Reacondicionamiento Térmico Viviendas Existentes >= 650 UF - Sellado de Infiltraciones	-32
Reacondicionamiento Térmico Viviendas Existentes < 650 UF - Sellado de Infiltraciones	-32
Reacondicionamiento Térmico - Cielo - Viviendas: < 650 UF Zona 5	-24
Instalación de Filtros Catalíticos	-23
Reacondicionamiento Térmico - Muro - Viviendas: < 650 UF Zona 5	-21
Leña Seca	-21
Reacondicionamiento Térmico - Muro - Viviendas: >= 650 UF	-21
Viviendas Nuevas - Nueva Norma - Zona 6	-19
Prohibición Leña Viviendas Existentes	-18
Prohibición Tenencia >1 Artefacto por Vivienda	-17
Recambio Estufas 1	-13
Norma Estufas	-13
Recambio Estufas 2	-11
Subsidio a Combustible Calefacción - Pellets	-8

Medida	Costo Medio [MMUSD/(ug/m³)]
Norma Cocinas	-8
Prohibición Gradual Calefactores	-8
Recambio Cocinas	-8
Congelamiento Parque Cocinas	-8
Prohibición Cocinas a Leña	-5
Subsidio a Combustible Calefacción - Gas Natural	-4
Reacondicionamiento Térmico Viviendas Existentes < 650 UF - Zona 5	0
Reacondicionamiento Térmico Viviendas Existentes >= 650 UF - Zona 5	1
Reacondicionamiento Térmico - Termopanel: Vidrio Doble Termopanel (3.6) - Viviendas: >= 650 UF	12
Reacondicionamiento Térmico - Termopanel: Vidrio Doble Termopanel (3.6) - Viviendas: < 650 UF	14
Sector Publico - Prohibición Leña	32
Congelamiento Parque Estufas	43
Prohibición Leña Viviendas Nuevas	44
Reacondicionamiento Térmico - Piso - Viviendas: < 650 UF Zona 5	99
Reacondicionamiento Térmico - Piso - Viviendas: >= 650 UF	165

Fuente: Elaboración propia

Tabla 6-5 Costo Efectividad Medidas de Fuentes Fugitivas

rabia o 5 costo Electividad ivicalidas de l'actites l'agitivas						
Medida	Costo Medio [MMUSD/(ug/m³)]					
Preparación de Suelos Agrícolas	-15					
Programa de Aspirado de Calles	-9					
Control Polvo Construcción de Edificios	375					
Arborización Urbana	877					

7. Referencias

Amann, M., J. Cofala, et al. (2007). Estimating concentrations of fine particulate matter in urban background air of European cities.

Ambiente Consultores & PRIEN (2007). Programa de Inversión Pública para Fomentar el Reacondicionamiento Térmico del Parque Construido de Viviendas. Estudio elaborado para el MINVU.

AQCC Perth (2012). "Perth Air Quality Management Plan Report Card 2010/2011."

CENMA (2000). Mejoramiento del Inventario de Emisiones de la Región Metropolitana.

CENMA (2007). Análisis general del impacto económico y social del plan de descontaminación atmosférica de Temuco y Padre las Casas.

Cofala, J. & S. Syri (1998a). Nitrogen Oxides Emissions, Abatement Technologies and Related Costs for Europe in the RAINS Model Database.

Cofala, J. & S. Syri (1998b). Sulfur emissions, abatement technologies and related costs for Europe in the RAINS model database.

CONAMA (1996). Análisis General del Impacto Económico y Social Plan de Descontaminación para el Área Circundante a la Fundición de Caletones de la División el Teniente de Codelco Chile. Santiago.

CONAMA (1998). Análisis General del Impacto Económico y Social Anteproyecto de Plan de Descontaminación para la Zona Circundante a La Fundición Potrerillos de la División Salvador de Codelco Chile. Santiago.

CONAMA (2000). Análisis General del Impacto Económico y Social Anteproyecto de Plan de Descontaminación para la Zona Circundante a la Fundición Chuquicamata de la División Chuquicamata de Codelco Chile.

CONAMA (2001). Análisis General del Impacto Económico y Social Anteproyecto de Reformulación del Plan de Descontaminación para la Localidad de María Elena y Pedro de Valdivia.

D'ELIA, I., M. BENCARDINO, et al. (2009). "Technical and Non-Technical Measures for air pollution emission reduction: The integrated assessment of the regional Air Quality Management Plans through the Italian national model." Atmospheric Environment.

DEFRA (2007). Air Quality and Climate Change: A UK Perspective.

DICTUC (2001). Generación de Instrumentos de Gestión Ambiental para la Actualización del Plan de Descontaminación Atmosférica para la Región Metropolitana de Santiago al Año 2000. Parte I. Estimación de los Beneficios Sociales de la Reducción de Emisiones y Concentraciones de Contaminantes Atmosféricos en la Región Metropolitana. Parte II. Análisis Económico de Medidas Seleccionadas. Santiago, P. Universidad Católica de Chile.

DICTUC (2008). Análisis y Evaluación del Impacto Económico y Social del Plan de Descontaminación de la Región Metropolitana. Santiago, Chile.

DSS (2008). Análisis General de Impacto Económico y Social del Plan de Descontaminación Atmosférico para la zona circundante a la ciudad de Tocopilla.

Emily Wilton & Bob Ayrey "Air Quality Management in Christchurch."

Environment Waikato (2008). Cost Effectiveness of Policy Options for Air Quality Management in Tokoroa.

EPA (2009). Integrated Science Assessment for Particulate Matter: Final Report. Research Triangle Park, NC, US Government.

EPA (2010a). Control Strategy Tool (CoST), Control Measure Database (CMDB) Documentation.

EPA (2010b). Control Strategy Tool (CoST), Control Measures Database.

EPA (2010c). Control Strategy Tool (CoST), Cost Equations Documentation.

EPA (2010d). "Control Strategy Tool (CoST), Development Documentation."

Faulkner, M. & P. Russel (2010). Review of Local Air Quality Management.

Felipe Mellado (2012). Gestión de calidad de aire en la ciudad de Christchurch, Nueva Zelanda. Presentación elaborada para el Ministerio de Medio Ambiente Chile.

GreenLabUC (2011). Guía Metodológica para la Elaboración de un Análisis General de Impacto Económico y Social (AGIES) para Instrumentos de Gestión de Calidad del Aire. Estudio encargado por el Ministerio de Medio Ambiente.

Klimont, Z., J. Cofala, et al. (2002). Modelling Particulate Emissions in Europe: A Framework to Estimate Reduction Potential and Control Costs.

Gestión y Política Ambiental DICTUC S.A.

Ministerio de Medio Ambiente (2012). Análisis Reacondicionamiento Térmico Viviendas. Elaborado por el Departamento de Economía Ambiental.

Ministry for the Environment New Zealand (2002). Ambient Air Quality Guidelines.

Pechan, E. H. (2006). AirControlNET: Documentation Report.

SCAQMD (2012). "Air Quality Management Plan: Draft 2012."

SCL Econometrics (2007). Análisis General de Impacto Económico y Social del Rediseño del Plan Operacional para Enfrentar Episodios Críticos de Contaminación Atmosférica por Material Particulado Respirable (PM10) en la Región Metropolitana. Estudio Realizado para CONAMA RM., SCL Econometrics.

SQM (1997). Plan del Descontaminación para el Material Particulado Respirable para las localidades de María Elena y Pedro de Valdivia.

Universidad de Concepción (2009). Consultoría de Antecedentes para el Análisis General de Impacto Económico y Social (AGIES) del Anteproyecto Plan de Descontaminación Atmosférica del Valle Central de la Región de O´Higgins: Informe de Avance 2.

Universidad de Concepción (2011). Elaboración Análisis General de Impacto Económico y Social (AGIES) del plan de Prevención Atmosférica de Concepción Metropolitano.

Universidad de Concepción & PROTERM (2011). Evaluación de Medidas para Reducir la Contaminación Atmosférica en Complejos Industriales y Grandes Fuentes del Gran Concepción.

8. Anexos

8.1 Descripción AGIES asociados a PDA y PPA

A continuación se presenta una pequeña contextualización de cada uno de los AGIES que han sido realizados en Chile posterior a la dictación del D.S 93 / 95 en donde se establece la realización de este tipo de análisis una vez publicado el anteproyecto de norma. En específico, los AGIES aquí descritos corresponden a todos aquellos que son asociados a un PDA o PPA.

Lo que se busca en este anexo es complementar lo descrito en la Tabla 4-1, para que así el lector logre una mejor comprensión de dicha tabla.

8.1.1 Plan de Descontaminación Chuquicamata

CONAMA (2000). Análisis General del Impacto Económico y Social Anteproyecto de Plan de Descontaminación para la Zona Circundante a la Fundición Chuquicamata de la División Chuquicamata de CODELCO Chile.

El año 1993 se aprobó el plan de descontaminación (debido a la declaración de zona saturada por SO_2 y MP10) que estableció reducciones de emisión y fijó el cumplimiento de las normas de calidad para el año 1999. Nuevos antecedentes permitieron prever que la meta fijada en el plan de descontaminación del año 1993 no sería cumplida con las inversiones comprometidas. Debido esto es que se decidió elaborar otro plan de descontaminación que establezca el cronograma de reducción de emisiones tal que si se llegue a la meta. Este documento corresponde al AGIES de esa actualización.

Se utiliza una metodología de análisis costo beneficio para evaluar las implicancias del plan. Para esto se analiza la situación del área y lo que debiera ocurrir si es que no se realiza el plan, luego, se identifican las opciones de implementación de la fuente emisora para responder con las exigencias, para después identificar y cuantificar los impactos que tienen una expresión económica, valorizándolos sobre la propia fuente (costos y beneficios del plan sobre ella), las poblaciones afectadas por la contaminación y el Estado como organismo fiscalizador.

8.1.2 Plan de Descontaminación Caletones

CONAMA (1996).Análisis General del Impacto Económico y Social Plan de Descontaminación para el Área Circundante a la Fundición de Caletones de la División El Teniente de CODELCO Chile

Mediante el D.S. N° 179 de 1994 se declaró zona saturada a la zona circundante de la Fundición Caletones de la División El Teniente de CODELCO, ubicada en la región O'Higgins, para los contaminantes SO₂ y MP10, comenzando de esta forma el proceso de elaboración del Plan de Descontaminación de la zona para recuperar los niveles indicados para las normas primaria y secundaria.

El documento establece que la recuperación de dichos niveles se realiza principalmente mediante la aplicación de cronogramas de reducción de emisiones, se señalan cuáles son las condiciones para el control de episodios críticos de contaminación, y también se establecen restricciones para la entrada de nuevas fuentes de contaminantes en la zona.

Se realiza un análisis costo-beneficio sobre distintos tipos de agentes, en el que se comparan los beneficios debidos a la reducción de contaminantes y los costos asociados a tal reducción. Algunos de los beneficios que se consideran son un menor impacto en la salud de la población en general y la población del campamento Sewell, menor impacto en los recursos hídricos, agrícolas y forestales, reducción de impactos en los materiales y el turismo, entre otros. Los tipos de costos que se consideran son costos por inversión y fiscalización, costos de operación de plantas de ácidos, costos por menor fusión de concentrados (cobre) y costos para potenciales actividades que se ubiquen en la zona. En cuanto a los impactos ambientales el único que es valorizado corresponde a los efectos en salud considerando solamente el equivalente a la pérdida de salarios de los días enfermos, o los que una persona pierde producto de su muerte prematura (enfoque capital humano); más los gastos que implican estos hechos.

8.1.3 Plan de Descontaminación Potrerillos

CONAMA (1998). Análisis General del Impacto Económico y Social Anteproyecto de Plan de Descontaminación para la Zona Circundante a la Fundición Potrerillos de la División Salvador de CODELCO Chile.

Debido a la declaración de zona saturada por SO₂ y MP10 es que se elaboró el anteproyecto del Plan de Descontaminación de Potrerillos. El documento presenta un análisis costo beneficio del anteproyecto considerando los aspectos de este que generan algún tipo de impacto económico tales como el cronograma de reducción de emisiones, el plan operacional para el control de episodios críticos, las exigencias en monitoreo y fiscalización y las exigencias a nuevas actividades que se instalen en la zona. Debido a que existen diferencias significativas en las calidades ambientales dentro del área saturada, también se evalúa la opción de relocalizar a la población.

El documento evalúa los costos y beneficios de los escenarios base y con plan, asociados a la población (vinculada y no vinculada a la empresa), al emisor (empresa) y

al Estado como organismo fiscalizador. En cuanto a los impactos ambientales el único que es valorizado corresponde a los efectos en salud, específicamente mortalidad, admisiones hospitalarias por enfermedades respiratorias, visitas a salas de emergencia, días de actividad restringida, infecciones respiratorias agudas bajas en niños (bronquitis y tos), bronquitis crónica y dolores de pecho por causa respiratoria. Para la valorización de la mortalidad se utilizó el método "capital humano" (valor presente de los ingresos esperados) mientras que para los efectos en morbilidad se incluyeron los costos de tratamientos médicos y productividad perdida.

8.1.4 Plan de Descontaminación María Elena y Pedro de Valdivia

CONAMA. Análisis General del Impacto Económico y Social "Anteproyecto de reformulación del plan de descontaminación para la localidad de María Elena y Pedro de Valdivia"

El año 1993 se declara zona saturada está área para el contaminante MP10. Luego, en el año 1998, se aprueba el plan de descontaminación (D.S. 164/1998 del Ministerio Secretaría General de la Presidencia). El Servicio de Salud, posteriormente, al realizar la evaluación del plan señala que persiste incumplimiento de la norma de calidad por lo que se da inicio a la reformulación de este. Cabe destacar que fundamentalmente el único emisor del área es el conjunto de operaciones de la empresa Sociedad Química y Minera de Chile S.A.

El documento corresponde al AGIES de la reformulación del Plan y fue realizado por CONAMA²⁷. Este realiza una identificación de los beneficios para la salud de la población residente en la localidad de María Elena (Pedro de Valdivia no tiene población residente) sin cuantificarlos ni valorizarlos. En cuanto a los costos, estos son solo cuantificados como el beneficio resultante de no restringir la producción en toneladas de caliche y horas de restricción de operación.

8.1.5 Plan de Prevención y Descontaminación de la Región Metropolitana

DICTUC (2001). Generación de Instrumentos de Gestión Ambiental para la Actualización del Plan de Descontaminación Atmosférica para la Región Metropolitana de Santiago al Año 2000. Estudio realizado para CONAMA RM. Santiago

²⁷ No se encuentra disponible el año en que fue realizado.

El objetivo del estudio fue analizar la posibilidad de cumplimiento de los objetivos propuestos por el PPDA con un número de medidas de reducción. El estudio se separa en dos partes.

Parte I: La metodología utilizada en este estudio para la estimación de los efectos en la salud se basa en el método de la función de daño, con el objetivo de cuantificar los beneficios en salud. Se consideró los habitantes de Santiago como la población expuesta, agrupada según grupos etarios y tipo de provisión. En esta ocasión se utilizaron funciones exposición-respuesta de estudios nacionales e internacionales, las cuales fueron combinadas para disminuir la incertidumbre.

Parte II: Consta de un análisis económico. Primero se estiman las reducciones atribuibles a cada medida según impacto en factores de emisión y nivel de actividad en fuentes fijas, vehículos livianos y pesados, polvo resuspendido y combustibles. Se utiliza como línea base la proyección realizada por CENMA (2000). Dado el alcance del estudio se utilizaron modelos simplificados (factores emisión-concentración) para la estimación de cambio en concentraciones. Finalmente se utilizaron indicadores de efectividad y eficiencia para presentar los resultados (Razón costo-beneficio). Para abordar la incertidumbre presente en la penetración de las medidas se utilizaron escenarios.

DICTUC (2008).Análisis y Evaluación del Impacto Económico y Social del Plan de Descontaminación de la Región Metropolitana. Informe encargado por CONAMA RM. Santiago, Chile

Cuando se licitó este estudio, Conama RM estaba encargada de desarrollar varios estudios orientados a evaluar el estado de cumplimiento de las normas planteadas por el PPDA de la RM y de proponer estrategias de control que fortalecieran, actualizaran o redefinieran las medidas aplicadas en el PPDA vigente. No obstante, cualquier propuesta de reformulación y actualización de las medidas vigentes deberían ser evaluadas respecto de su impacto económico y social a través de un estudio específico (Análisis General de Impacto Económico y Social, AGIES), según se establece en el D.S.Nº94/95 sobre la dictación y formulación de Planes de Prevención y Descontaminación.

El presente estudio correspondió a una propuesta de elaboración del AGIES respecto de las medidas propuestas para la actualización del PPDA, y además, al desarrollo de un Sistema de Control de Gestión de la Región Metropolitana.

8.1.6 Plan de Descontaminación Tocopilla

DSS (2008).Análisis General de Impacto Económico y Social del Plan de Descontaminación Atmosférico para la Zona Circundante a la Ciudad de Tocopilla. Estudio realizado para CONAMA.

Debido a que Tocopilla fue declarada zona saturada por MP10 es que se desarrolló este documento como parte del cumplimiento de la normativa ambiental. El documento realiza un análisis costo beneficio evaluando las medidas de reducción de emisiones directas de MP10 contempladas en el anteproyecto del plan.

En el estudio se identifican diversos beneficios ambientales que serían generados por la aplicación del plan (daño en materiales, agricultura, turismo, diversidad ecosistemas). Sin embargo, solo se valoriza la reducción de los efectos en salud debido a la inexistencia de antecedentes para evaluar los otros efectos o porque el beneficio sería marginal por la poca importancia de la actividad en el sector.

Con respecto a los costos, los principales tienen que ver con la evaluación monetaria para los diferentes escenarios asociados a tecnologías de abatimiento en las empresas generadoras eléctricas, los costos asociados a las medidas de mitigación en las empresas SQM y LIPESED, y finalmente los costos asociados a las principales medidas de control y seguimiento donde lo más relevante resulta de las implementación de sistemas de monitoreo continuo y en línea para las empresas generadoras eléctricas.

8.1.7 Plan de Descontaminación Temuco y Padre las Casas

CENMA (2007). Análisis General del Impacto Económico y Social del Plan de Descontaminación Atmosférica de Temuco y Padre las Casas. Estudio realizado para CONAMA IX Región.

CONAMA IX Región elaboró una propuesta del Plan de Descontaminación del Aire (PDA) para la zona de Temuco y Padre Las Casas. El PDA es un instrumento de gestión ambiental que consiste de una serie de medidas que directa e indirectamente buscan reducir los niveles de contaminación por MP₁₀ para así lograr el cumplimiento de la norma diaria de calidad del aire (percentil 98). El estudio presta especial atención sobre los impactos económicos y sociales de la implementación de las medidas con respecto al control de la combustión de leña residencial.

La línea base de emisiones se estima desagregando la actividad en la región de estudio según los siguientes sectores: residencial, industrial, fuentes móviles y quemas agrícolas. El comportamiento futuro se estima con una combinación de modelos tanto top-down como bottom-up, dependiendo de la información disponible para cada

sector. Para estimar las concentraciones en la línea base en concentraciones se utilizó un modelo aproximado *rollback*.

Las medidas fueron agrupadas según aquellas de impacto directo e indirecto y se cuantificaron los beneficios en salud, visibilidad y eficiencia energética asociados a cada una de ellas. Finalmente se realiza un análisis distributivo sobre los beneficios y económico en base a indicadores.

8.1.8 Plan de Prevención Concepción Metropolitano

Universidad de Concepción (2011). Elaboración Análisis General de Impacto Económico y Social (AGIES) del plan de Prevención Atmosférica de Concepción Metropolitano.

El año 2006, mediante DS Nº 41/2006, se declaró zona latente por concentraciones diarias de MP10 a 10 comunas del Gran Concepción. En vista de lo anterior, el año 2007 se da inicio al proceso de elaboración del Plan de Prevención Atmosférico (PPA).

En este marco, este estudio realiza el Análisis General del Impacto Económico y Social del PPACM, el cual evalúa un conjunto de medidas para la reducción de emisiones propuestas por el anteproyecto del PPACM, considerando sus opciones de regulación, posibles instrumentos económicos, herramientas de gestión ambiental, y sus impactos económicos y sociales.

Una vez obtenido el impacto en la reducción de las concentraciones de MP10 producto de las medidas de reducción de emisiones evaluadas, lo que se realiza a partir de la utilización de Factores de Emisión Concentración (FEC) según fuente y comuna, se evalúa el impacto económico de las medidas incorporadas en el análisis, estableciendo indicadores económicos de costo-efectividad y de rentabilidad social.

El tipo de análisis económico que se realiza corresponde a un análisis costo beneficio en donde los beneficios que son valorizados corresponden a la mejora de la salud de la población (mortalidad prematura y admisiones respiratorias por causas respiratorias, cardiovasculares y asma) y visibilidad producto de la disminución de concentración de MP10.

El estudio presenta un análisis distributivo de los costos y beneficios según agentes económicos, análisis de sensibilidad de los parámetros relevantes y análisis de incertidumbre a partir de simulación de Montecarlo.

8.2 Air Control NET (ACN)

A continuación se presenta un detalle de las eficiencias de reducción y costos asociados a las medidas aplicables a fuentes móviles, obtenidas del modelo Air Control NET de la EPA:

Tabla 8-1Eficiencia de Reducción y Costos Medidas Fuentes Móviles – AirControlNET

Tipo de fuente	Categoría	Medida de Control	, MP2,5	MP10	NO _x	cov	SO ₂	Costo	Unidad Costo	Año Costo
		Gasolina Reformulada			0.05%	7.65%		0.043	USD/galón	1997
	Motores a Gasolina	Presión de Vapor Reid Baja en Estación de alto ozono			-0.25%	5.6%		0.0036	USD/galón	1997
		RFG and High Enhanced I/M Program			6%	11.4%		11.43 - 17.95	USD/vehículo	1997
		Norma de Emisiones y Control de azufre – 2010			19%			1,940 - 2,713	USD/vehículo	1999
	Vehículos Pesados y	Norma de Emisiones y Control de azufre – 2015			44%			1,940 - 2,713	USD/vehículo	1999
	Vehículos a Diesel	Norma de Emisiones y Control de azufre – 2020			61%			1,940 - 2,713	USD/vehículo	1999
		Norma de Emisiones y Control de azufre – 2030			76%			1,940 - 2,713	USD/vehículo	1999
En Ruta		Programa Voluntario de Mejora: Biodiesel	7%	7%		13%		0.225	USD/galón	1999
	Vehículos Pesados a	Programa Voluntario de Mejora: Catalizador Oxidativo	24.52%	24.01%		50%	97%	1,750	USD/vehículo	1999
	Diesel	Programa Voluntario de Mejora: Filtro de partículas	62.26%	61.99%		60%	97%	6,500	USD/vehículo	1999
		Programa Voluntario de Mejora: Reducción Catalítica Selectiva			19.26%			15,000	USD/vehículo	1999
	Mahfaulaa	Norma de Emisiones y Control de azufre - 2010			34%			82.43 - 252.9	USD/vehículo	1999
	Vehículos Livianos y Vehículos a	Norma de Emisiones y Control de azufre – 2015			54.5%			82.43 - 252.9	USD/vehículo	1999
	Gasolina	Norma de Emisiones y Control de azufre – 2020			64.5%			82.43 - 252.9	USD/vehículo	1999
		Norma de Emisiones y Control de azufre –			83%			82.43 - 252.9	USD/vehículo	1999

Tipo de fuente	Categoría	Medida de Control	MP2,5	MP10	NO _x	cov	SO ₂	Costo	Unidad Costo	Año Costo
		2030								
	Vehículos Livianos a	Inspección básica y programa de mantenimiento	٧	٧	٧	٧*	٧	6.52	USD/vehículo	2002
	Gasolina	Inspección y programa de mantenimiento reforzado			6.9%	10.8%		11.43 - 17.95	USD/vehículo	1997
		Norma de Emisiones - 2010	36%	36%	31.5%	43%		56 - 5,195	USD/vehículo	1998
	Vehículos a	Norma de Emisiones - 2015	46%	46%	45.5%	54.5%		56 - 5,195	USD/vehículo	1998
	Diesel	Norma de Emisiones - 2020	51.5%	51.5%	46%	62%		56 - 5 <i>,</i> 195	USD/vehículo	1998
		Norma de Emisiones - 2030	51.5%	51.5%	53.5%	72%		56 - 5,195	USD/vehículo	1998
		Norma de Emisiones - 2010	3.5%	3.5%	38.5%	39.5%		550 - 847	USD/vehículo	2001
	Vehículos a	Norma de Emisiones - 2015	3.5%	3.5%	45.5%	47%		550 - 847	USD/vehículo	2001
	Gasolina	Norma de Emisiones - 2020	3%	3%	46.5%	48%		550 - 847	USD/vehículo	2001
		Norma de Emisiones - 2030	3%	3%	46.5%	45.5%		550 - 847	USD/vehículo	2001
		Norma de Emisiones - 2010	17%	17%	8%	24%		47 - 378	USD/vehículo	2001
Fuera de	Vehículos	Norma de Emisiones - 2015	36.5%	36.5%	15%	40%		47 - 378	USD/vehículo	2001
Ruta	Todo Terreno	Norma de Emisiones - 2020	47.5%	47.5%	18%	64%		47 - 378	USD/vehículo	2001
		Norma de Emisiones - 2030	48.5%	48.5%	18.5%	65%		47 - 378	USD/vehículo	2001
		Norma de Emisiones - 2010	10%	10%	3.5%	12.5%		46 - 296	USD/vehículo	2001
	Motocicletas	Norma de Emisiones - 2015	20.5%	20.5%	7%	25%		46 - 296	USD/vehículo	2001
	iviotocicietas	Norma de Emisiones - 2020	25.5%	25.5%	8.5%	31%		46 - 296	USD/vehículo	2001
		Norma de Emisiones - 2030	26%	26%	8.5%	32%		46 - 296	USD/vehículo	2001
		Norma de Emisiones - 2010	10%	10%	Х	20%		57 - 823	USD/vehículo	2001
	Motos de	Norma de Emisiones - 2015	31%	31%	Х	45%		57 - 823	USD/vehículo	2001
	Nieve	Norma de Emisiones - 2020	49%	49%	Х	62%		57 - 823	USD/vehículo	2001
		Norma de Emisiones - 2030	58%	58%	Х	69%		57 - 823	USD/vehículo	2001

Fuente: (Pechan 2006)

NOTA: (V=reducción, V*=contaminante principal, X=aumento)

8.3 Control Strategy Tool (CoST)

A continuación se detallan las características principales y los *inputs* utilizados por el modelo CoST, para luego profundizar en la manera en que el modelo utiliza las ecuaciones de costo para estimar los costos finales de las estrategias de control.

8.3.1 Estrategias de control

En palabras simples, una estrategia de control es un conjunto de medidas de control que se aplican a un inventario de emisiones de distintas fuentes en una región específica, cuyo objetivo es la reducción de emisión de contaminantes para mejorar la calidad del aire y reducir el riesgo en la salud humana. La característica destacable de CoST es que automatiza los pasos a seguir para crear una estrategia de control.

A continuación se presenta un diagrama con los pasos básicos a seguir para hacer una estrategia de control:

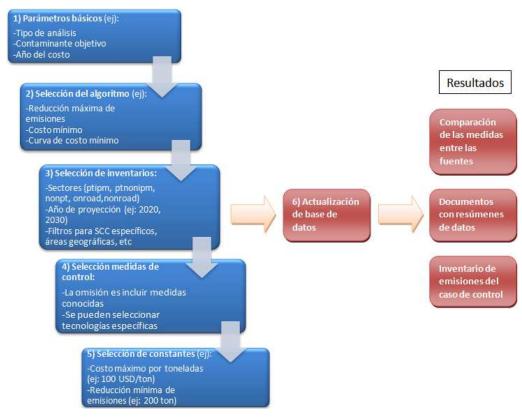


Figura 8-1. Diagrama de los pasos básicos para ejecutar una estrategia de control

Fuente: (EPA 2010d)

Los principales resultados para las estrategias de control se presentan en una tabla llamada "Resultado Detallado de la Estrategia" que entrega los costos de aplicar las distintas medidas de control y la reducción total de emisiones lograda.

8.3.1.1 Tipos de algoritmos para las estrategias de control

Para determinar qué medidas de control se asignarán a las fuentes de emisión, existen 4 algoritmos (o estrategias), y estos se diferencian en los parámetros que se utilizan para caracterizar las medidas de control. Los parámetros pueden ser el costo, la eficiencia o la cantidad de reducción de emisiones.

- 1) Reducción máxima de emisiones: consiste en asignar a cada fuente una única medida de control aplicando la reducción máxima de emisiones del contaminante objetivo, independiente del costo.
- 2) **Costo mínimo:** a cada fuente se le asigna una única medida de control que logre un porcentaje de reducción de emisiones especificado en una región con el menor costo anualizado posible.
- 3) Curva de costo mínimo: realiza varias iteraciones del algoritmo de Menor Costo con distintos porcentajes de reducción y genera un gráfico que muestra como el costo anualizado aumenta a medida que el nivel de reducción de emisiones aumenta.
- 4) Aplicación de medidas en serie: asigna todas las medidas de control que pueden ser aplicadas a una fuente, según un orden específico. Usualmente se usa para fuentes móviles, cuyas medidas de control son generalmente independientes unas de otras.

Los primeros tres algoritmos se aplican principalmente a fuentes puntuales y no puntuales, mientras que el último se aplica generalmente a fuentes móviles, para las cuales la mayoría de las medidas aplicables son independientes una de otra.

Además, se presentan dos algoritmos adicionales capaces de generar inventarios de emisiones alterados, sin ser considerados estrategias de control. Estos algoritmos incorporan el concepto de programas de control, que corresponde a un conjunto de medidas de control que se aplican para estimar los efectos de la implementación de una regulación típica. Lo anterior se aplica a inventarios actuales al momento de proyectarlos a futuro con la aplicación de alguna regulación. Sobre esta "línea base" es que se aplican medidas adicionales de abatimiento. Los algoritmos son:

 Inventario anotado: asigna medidas de control al inventario basado en su eficiencia de control (este campo es explicado más adelante). Se puede utilizar para completar información cuando existen fuentes emisoras sin información de medidas de reducción pero con información de eficiencias de control.

2) **Proyección del inventario a año futuro:** aplica programas de control²⁸ y factores de crecimiento a las fuentes, necesario para proyectar un inventario de año base a un inventario de un año futuro.

8.3.1.2 Inputs para las estrategias de control del modelo

Todos los tipos de estrategias de control tienen campos que deben ser especificados por el usuario previo a la ejecución del modelo de la estrategia. A continuación se explican los campos clasificados en los siguientes tipos: datos resumen, inventarios, medidas y programas de control, constantes y valores ajustados automáticamente por CoST:

8.3.1.2.1 Datos Resumen

- ✓ Nombre de la estrategia de control
- ✓ Proyecto: nombre del proyecto por el cual esta estrategia se está ejecutando. Por ejemplo, "Initial Ozone NAAQS", que es un proyecto que define los niveles de contaminantes atmosféricos (ozono en este caso) en EE.UU. bajo la administración de la EPA.
- ▼ Tipo de análisis: es el tipo de algoritmo que se usa para asignar las medidas de control a las fuentes de emisión, para lograr una reducción en las emisiones. Por ejemplo, el de Reducción Máxima de Emisiones o de Costo Mínimo.
- ✓ **Año del costo:** es el año que se usa para calcular los costos para una estrategia de control, considerando el efecto de inflación.

Todos los costos de las medidas de control se ajustan por inflación al año de análisis usando el PIB encadenado (*Chained GDP*²⁹) de los EE.UU., cuyos valores se obtienen del Departamento de Comercio de los EE.UU., Oficina de Análisis Económico³⁰. La ecuación a utilizar se presenta a continuación:

³⁰http://www.bea.gov/national/xls/gdplev.xls

²⁸ Programa de control: es un conjunto de medidas de control y de otros ajustes, como factores de proyección, que se usan para estimar los efectos de implementar una regulación y proyectar un inventario de emisiones para un año base a uno futuro.

²⁹ El PIB se estima en dólares encadenados, mediante una metodología creada por la Oficina de Análisis Económico del Departamento de Comercio de los EE.UU. para ajustar valores por inflación removiendo la estacionalidad residual.

Ver: http://www.census.gov/foreign-trade/aip/seasonalchain.html

$$Costo_{t}(\$) = \frac{Costo_{to}(\$) \times PIB_encade \, nado_{t}}{PIB_encade \, nado_{to}}$$

Ecuación 1 – Actualización de costos por inflación

Donde,

- Costo_t: costo al año t
- Costo_{t0}: costo al año t0 (año original de datos)
- PIB_encadenado_t: PIB encadenado del año de interés t
- PIB encadenado_{to}: PIB encadenado el año t0 (año original de datos)
- ✓ **Año objetivo:** es el año objetivo para la ejecución del modelo. Generalmente está representado por los inventarios de entrada.
- ✓ Región: nombre de la región en la cual se aplicará la estrategia de control. Solo se usa como información del usuario y no tiene efectos en los resultados del programa.
- ✓ **Contaminante objetivo:** es el contaminante elegido como el de primer interés para su reducción en la estrategia de control. Los otros contaminantes que no sean objetivos también serán considerados en los resultados de la estrategia de control si es que aparecen en los inventarios de entrada y son reducidos por las medidas. Notar que estos últimos podrían aumentar o disminuir su cantidad de emisiones.
- ✓ Tasa de descuento: se utiliza para calcular el costo de capital anualizado para medidas de control cuando la información apropiada esté disponible. También se utiliza para determinar el valor presente de los pagos a futuro.
- ✓ Usar ecuaciones de costo: se usa un indicador booleano (verdadero o falso) que indica si las ecuaciones de costo deben ser usadas en la ejecución del modelo. En el caso que no se usen, se utilizará un valor por defecto por tonelada reducida.
- ✓ Incluir medidas sin información sobre costos: se usa un indicador booleano para indicar si las medidas de control que no poseen información de costos debieran ser incluidas o no en la ejecución del modelo. En el caso que no sean seleccionadas, sólo las medidas de control con información de costos serán utilizadas. En el caso que sean seleccionadas, no se estimará el costo para estas medidas, solamente la reducción de emisiones.

8.3.1.2.2 Inventarios

✓ Inventarios de emisiones: son los inventarios de emisiones que se usarán en la ejecución del modelo. Los inventarios deben ser cargados en la EMF y es importante saber que muchos inventarios pueden ser procesados en el modelo. Existen distintas versiones de inventarios y la versión correcta debe ser seleccionada antes de la ejecución del modelo.

- ✓ **Unión de inventarios:** se usa una casilla de selección de booleano (boolean checkbox en inglés) que especifica si toda la información de los inventarios se va a fusionar antes de aplicar el algoritmo de resolución de la estrategia o si se van a utilizar por separado para obtener resultados independientes.
- Filtro de inventario: filtro general que puede ser ingresado usando una sintaxis en lenguaje SQL³¹ del tipo "where clause"³². Por ejemplo, usar "SCC like '212%' " para limitar la aplicación del análisis sólo a los archivos de inventarios cuyos códigos SCC parten con un 212.
- ✓ Conjunto de datos de regiones (condados): datos del EMF con una lista específica de regiones (condados) en los cuales se van a aplicar medidas de control. Si el usuario usa un conjunto de regiones en la estrategia de control, las medidas de control sólo serán aplicadas a las regiones que estén en la lista. Cuando se importen los conjuntos de datos en el EMF, asegurarse de que los archivos CSV tengan a lo menos dos columnas, en donde la primera fila es el nombre de esas columnas.
- ✓ Versión del conjunto de datos de regiones (condados): si un conjunto de datos de regiones es especificado, se debe seleccionar una versión de este. Esta entrada es obligatoria porque el EMF puede guardar múltiples versiones de cada conjunto de datos.

8.3.1.2.3 Medidas y programas de control

Estas medidas de control se usan para todos los tipos de algoritmos (o estrategias), excepto para el tipo "Proyección del inventario a año futuro".

- ✓ Tipos de medidas a incluir: es una lista de los tipos de medidas que se incluyen en la estrategia de control. Actualmente los tipos disponibles son emergentes (viables, pero no con un amplio uso en la actualidad), hipotéticos (controles inventados para análisis de sensibilidad), conocidos (conocidos por ser usados ampliamente) y obsoletos (usados en instalaciones más antiguas).
- ✓ Medidas a incluir: lista específica con los nombres de las medidas que usarán en la estrategia. Las medidas con nombres similares pueden ser seleccionadas como un grupo.

Para el tipo de estrategia "Proyección del inventario a año futuro" solo es necesario un tipo de entrada que es el siguiente:

Lista específica de programas a incluir en la estrategia de control.

³² "WHERE Clause": es un comando que se utiliza para extraer los archivos que cumplen un cierto criterio. Para mayor información visitar: http://www.w3schools.com/sql/sql where.asp

³¹StructuredQueryLanguage (SQL): lenguaje de programación diseñado para administrar bases de datos.

8.3.1.2.4 Constantes

Si los valores de las siguientes constantes no son satisfechos por una combinación particular de medida de control y fuente, entonces CoST no aplicará la medida de control a la fuente respectiva y buscará otras medidas de control que satisfagan las constantes.

- ✓ Reducción mínima de emisiones (toneladas): si se especifica, se requiere que cada medida de control reduzca las emisiones del contaminante objetivo a lo menos en la cantidad especificada para una fuente particular.
- ✓ Eficiencia de control mínima (%): si se especifica, se requiere que cada medida de control tenga una eficiencia mayor o igual a la eficiencia de control mínima para una fuente particular y contaminante objetivo.
- ✓ **Costo máximo por tonelada (USD/ton):** si se especifica, se requiere que cada medida de control tenga un costo por tonelada menor o igual al costo máximo por tonelada para el contaminante objetivo de cada fuente.
- ✓ **Costo anual máximo (USD/año):** si se especifica, se requiere que cada medida de control tenga un costo anual menor o igual que el costo anual máximo para cada contaminante objetivo y fuente.
- ✓ Porcentaje mínimo de diferencia de reducción para reemplazo de control (%): si se especifica, esta constante determina cuándo el reemplazo de una medida de control logra un apropiado porcentaje de reducción, con respecto al porcentaje de reducción de control pre-existente para el inventario de la fuente de emisión del contaminante objetivo.

8.3.1.2.5 Valores (campos) ajustados automáticamente por CoST

- ✓ Creador: Nombre de la persona que lo creó.
- ✓ Fecha y hora de la última modificación del modelo
- ✓ Fecha y hora de la última ejecución el modelo
- ✓ Fecha y hora de la última vez que se completó la ejecución del modelo
- Costo total anual de aplicar la estrategia
- Reducción total de emisiones del contaminante objetivo (toneladas)
- Estado de la ejecución del programa: sin empezar, ejecutando, en espera, completado, fallado.

8.3.2 Base de datos de las medidas de control (CMDB)

8.3.2.1 Introducción

CoST utiliza la Base de Datos de las Medidas de Control (CMDB, por sus siglas en inglés) para desarrollar estrategias de control, y proveer una interfaz entre el usuario y la base de datos. La CMDB es una base de datos relacional que contiene información en un conjunto extenso de medidas de control para fuentes de emisión puntuales, no puntuales y móviles. La información de la base de datos incluye descripciones de las medidas de control, eficiencias de control para los contaminantes afectados, costos de control y tipos de fuentes o procesos a los que se pueden aplicar las medidas de control.

Para muchas medidas de control se necesitan valores simples para calcular los costos totales al aplicarse sobre una cierta fuente de emisión, mientras que algunas necesitan ecuaciones de costo más complejas cuando existe la información necesaria. Una explicación y detalle sobre las ecuaciones de costo se presenta en la sección 8.3.3.

8.3.2.2 Elementos de la CMDB

La información de las CMDB se separa en 6 tablas distintas, explicadas a continuación:

8.3.2.2.1 Tabla Resumen

Esta tabla entrega información de alto nivel para cada medida de control. Entre la información que aparece se encuentra una lista de las medidas de control, los contaminantes que son reducidos, los métodos que se utilizan para reducir las emisiones, los sectores en los que se aplican las medidas de control y el estado de la medida de control, entre otros datos.

Se consideran 100 tipos distintos de medidas (Ej. Filtro de partículas, Programa de Educación, Cambio de Combustibles, etc.) y los siguientes contaminantes principales: NO_X, SO₂, MP2,5, MP10, COV, Hg y NH₃. Además, se consideran los siguientes métodos de reducción de emisiones: aparatos, actividades o procesos.

Por otra parte, existen sectores en los que se dividen las fuentes de emisión en las que se aplican las medidas, estos pueden ser: fuentes puntuales estacionarias no cubiertas por el IPM, fuentes puntuales estacionarias cubiertas por IPM, fuentes areales (no puntuales), vehículos en carretera/ruta, fuentes móviles que no se desplazan en carretera, aviones, trenes o buques marinos, quemas (forestal, residencial, etc.) identificadas como fuentes puntuales, fuentes fugitivas de polvo, o fuentes agrícolas.

Las medidas de control se pueden dividir en 4 tipos según su uso: **conocidas** (se utilizan en la actualidad), **emergentes** (se espera que se usen en el futuro), **hipotéticas** (cuando la información usada es hipotética) u **obsoletas** (ya no se usan en la actualidad).

Una breve descripción de los campos más importantes aparece en la siguiente tabla:

Tabla 8-2 Descripción de los campos de la tabla de resumen

CMAbbreviation Abreviación única para la medida de control. Se utilizan acrónimos. 604 registro Contaminante principal: es el contaminante que es reducido en mayor cantida por la medida de control. Esta etiqueta no tiene efectos en como la medida es asignada a la fuente por el CoST. En el archivo aparecen los siguientes contaminantes: NO _x , SO ₂ , MP2_5, MP10, COV, Hg, NH ₃ . Método utilizado para reducir emisiones. Este puede ser uno de los siguientes e aparato (ej: Filtro para diesel particulado) actividad (ej: Programa de educación para la población) proceso (ej: Planta de ácido sulfúrico) Grupo de fuentes o sector industrial a los cuales se les aplica la medida de con Aproximadamente son 260 campos. Algunos ejemplos: pinturas en aerosol, quemas agrícolas, carbón bituminoso (calderas industriales/comerciales), manufactura de cemento, pavimentación de caminos, entre muchos otros. Inventario de emisiones del sector o grupo de sectores a los que se les aplica la medida de control. Estos pueden ser: PTNONIPM (fuentes puntuales estacionarias no cubiertas por IPM), PTIPM (fuentes puntuales estacionarias cubiertas por IPM), NONPT (fuentes areales), ONROAD (vehículos en carretera/ruta), NONROAD (fuentes móviles que no se desplazan en la carretera), ALM (aviones, trenes o buques marinos), PTFIRE (quemas identificadas como fuentes puntuales), AFDUST (fuentes agrícolas). Caracteriza el estado de la medida de control: Conocida (en uso), Emergente (se espera que se use en el futuro), Hipotética (la información)		bia 8-2 Descripción de los campos de la tabla de resumen
Control. Son 604 registros. CMAbbreviation Abreviación única para la medida de control. Se utilizan acrónimos. 604 registro Contaminante principal: es el contaminante que es reducido en mayor cantida por la medida de control. Esta etiqueta no tiene efectos en como la medida es asignada a la fuente por el CoST. En el archivo aparecen los siguientes contaminantes: NO _x , SO ₂ , MP2_5, MP10, COV, Hg, NH ₃ . Método utilizado para reducir emisiones. Este puede ser uno de los siguientes aparato (ej: Filtro para diesel particulado) actividad (ej: Programa de educación para la población) proceso (ej: Planta de ácido sulfúrico) Grupo de fuentes o sector industrial a los cuales se les aplica la medida de con Aproximadamente son 260 campos. Algunos ejemplos: pinturas en aerosol, quemas agrícolas, carbón bituminoso (calderas industriales/comerciales), manufactura de cemento, pavimentación de caminos, entre muchos otros. Inventario de emisiones del sector o grupo de sectores a los que se les aplica la medida de control. Estos pueden ser: PTNONIPM (fuentes puntuales estacionarias no cubiertas por IPM), PTIPM (fuentes puntuales estacionarias cubiertas por IPM), NONPT (fuentes areales), ONROAD (vehículos en carretera/ruta), NONROAD (fuentes móviles que no se desplazan en la carretera), ALM (aviones, trenes o buques marinos), PTFIRE (quemas identificadas como fuentes puntuales), AFDUST (fuentes fugitivas de polvo), o AG (fuentes agrícolas). Caracteriza el estado de la medida de control: Conocida (en uso), Emergente (se espera que se use en el futuro), Hipotética (la información	•	Descripción del campo
Contaminante principal: es el contaminante que es reducido en mayor cantida por la medida de control. Esta etiqueta no tiene efectos en como la medida es asignada a la fuente por el CoST. En el archivo aparecen los siguientes contaminantes: NO _x , SO ₂ , MP2_5, MP10, COV, Hg, NH ₃ . Método utilizado para reducir emisiones. Este puede ser uno de los siguientes aparato (ej: Filtro para diesel particulado) actividad (ej: Programa de educación para la población) proceso (ej: Planta de ácido sulfúrico) Grupo de fuentes o sector industrial a los cuales se les aplica la medida de con Aproximadamente son 260 campos. Algunos ejemplos: pinturas en aerosol, quemas agrícolas, carbón bituminoso (calderas industriales/comerciales), manufactura de cemento, pavimentación de caminos, entre muchos otros. Inventario de emisiones del sector o grupo de sectores a los que se les aplica la medida de control. Estos pueden ser: PTNONIPM (fuentes puntuales estacionarias no cubiertas por IPM), PTIPM (fuentes puntuales estacionarias cubiertas por IPM), NONPT (fuentes areales), ONROAD (vehículos en carretera/ruta), NONROAD (fuentes móviles que no se desplazan en la carretera), ALM (aviones, trenes o buques marinos), PTIFIRE (quemas identificadas como fuentes puntuales), AFDUST (fuentes fugitivas de polvo), o AG (fuentes agrícolas). Caracteriza el estado de la medida de control: Conocida (en uso), Emergente (se espera que se use en el futuro), Hipotética (la información	CMName	Nombre único de la medida de control. No se puede repetir para otra medida de control. Son 604 registros.
MajorPoll por la medida de control. Esta etiqueta no tiene efectos en como la medida es asignada a la fuente por el CoST. En el archivo aparecen los siguientes contaminantes: NO _x , SO ₂ , MP2_5, MP10, COV, Hg, NH ₃ . Método utilizado para reducir emisiones. Este puede ser uno de los siguientes actividad (ej: Filtro para diesel particulado) actividad (ej: Programa de educación para la población) proceso (ej: Planta de ácido sulfúrico) Grupo de fuentes o sector industrial a los cuales se les aplica la medida de con Aproximadamente son 260 campos. Algunos ejemplos: pinturas en aerosol, quemas agrícolas, carbón bituminoso (calderas industriales/comerciales), manufactura de cemento, pavimentación de caminos, entre muchos otros. Inventario de emisiones del sector o grupo de sectores a los que se les aplica la medida de control. Estos pueden ser: PTNONIPM (fuentes puntuales estacionarias no cubiertas por IPM), PTIPM (fuentes puntuales estacionarias cubiertas por IPM), NONPT (fuentes areales), ONROAD (vehículos en carretera/ruta), NONROAD (fuentes móviles que no se desplazan en la carretera), ALM (aviones, trenes o buques marinos), PTFIRE (quemas identificadas como fuentes puntuales), AFDUST (fuentes fugitivas de polvo), o AG (fuentes agrícolas). Caracteriza el estado de la medida de control: Conocida (en uso), Emergente (se espera que se use en el futuro), Hipotética (la información	CMAbbreviation	Abreviación única para la medida de control. Se utilizan acrónimos. 604 registros.
ControlTechnology aparato (ej: Filtro para diesel particulado) actividad (ej: Programa de educación para la población) proceso (ej: Planta de ácido sulfúrico) Grupo de fuentes o sector industrial a los cuales se les aplica la medida de con Aproximadamente son 260 campos. Algunos ejemplos: pinturas en aerosol, quemas agrícolas, carbón bituminoso (calderas industriales/comerciales), manufactura de cemento, pavimentación de caminos, entre muchos otros. Inventario de emisiones del sector o grupo de sectores a los que se les aplica la medida de control. Estos pueden ser: PTNONIPM (fuentes puntuales estacionarias no cubiertas por IPM), PTIPM (fuentes puntuales estacionarias cubiertas por IPM), NONPT (fuentes areales), NONROAD (vehículos en carretera/ruta), NONROAD (fuentes móviles que no se desplazan en la carretera), ALM (aviones, trenes o buques marinos), PTFIRE (quemas identificadas como fuentes puntuales), AFDUST (fuentes fugitivas de polvo), o AG (fuentes agrícolas). Caracteriza el estado de la medida de control: Conocida (en uso), Emergente (se espera que se use en el futuro), Hipotética (la información)	Major Poll	
Aproximadamente son 260 campos. Algunos ejemplos: pinturas en aerosol, quemas agrícolas, carbón bituminoso (calderas industriales/comerciales), manufactura de cemento, pavimentación de caminos, entre muchos otros. Inventario de emisiones del sector o grupo de sectores a los que se les aplica la medida de control. Estos pueden ser: PTNONIPM (fuentes puntuales estacionarias no cubiertas por IPM), PTIPM (fuentes puntuales estacionarias cubiertas por IPM), NONPT (fuentes areales), ONROAD (vehículos en carretera/ruta), NONROAD (fuentes móviles que no se desplazan en la carretera), ALM (aviones, trenes o buques marinos), PTFIRE (quemas identificadas como fuentes puntuales), AFDUST (fuentes fugitivas de polvo), o AG (fuentes agrícolas). Caracteriza el estado de la medida de control: Conocida (en uso), Emergente (se espera que se use en el futuro), Hipotética (la información	ControlTechnology	actividad (ej: Programa de educación para la población)
medida de control. Estos pueden ser: PTNONIPM (fuentes puntuales estacionarias no cubiertas por IPM), PTIPM (fuentes puntuales estacionarias cubiertas por IPM), NONPT (fuentes areales), ONROAD (vehículos en carretera/ruta), NONROAD (fuentes móviles que no se desplazan en la carretera), ALM (aviones, trenes o buques marinos), PTFIRE (quemas identificadas como fuentes puntuales), AFDUST (fuentes fugitivas de polvo), o AG (fuentes agrícolas). Caracteriza el estado de la medida de control: Conocida (en uso), Emergente (se espera que se use en el futuro), Hipotética (la información)	SourceGroup	quemas agrícolas, carbón bituminoso (calderas industriales/comerciales),
Conocida (en uso), Class Conocida (en uso), Emergente (se espera que se use en el futuro), Hipotética (la información	Sector	 PTNONIPM (fuentes puntuales estacionarias no cubiertas por IPM), PTIPM (fuentes puntuales estacionarias cubiertas por IPM), NONPT (fuentes areales), ONROAD (vehículos en carretera/ruta), NONROAD (fuentes móviles que no se desplazan en la carretera), ALM (aviones, trenes o buques marinos), PTFIRE (quemas identificadas como fuentes puntuales), AFDUST (fuentes fugitivas de polvo), o
Obsoleta (no está más en uso)	Class	 Conocida (en uso), Emergente (se espera que se use en el futuro), Hipotética (la información disponible es hipotética) u Obsoleta (no está más en uso)
EquipLife La expectativa de vida de una medida de control, en años. Los valores se encuentran entre 0 y 40 años.	EquipLife	
NEIDeviceCode Código numérico que es usado por la <i>National Emission Inventory</i> (NEI) para indicar que la medida ha sido aplicada a una fuente.	NEIDeviceCode	
DateReviewed Fecha de la última vez en que fue revisada la medida de control	DateReviewed	Fecha de la última vez en que fue revisada la medida de control
DataSource Lista de códigos numéricos separados por ´ ´ para referirse a ítems en la tabla referencia.	DataSource	Lista de códigos numéricos separados por ' ' para referirse a ítems en la tabla de referencia.
Description Información extra de la medida de control	Description	Información extra de la medida de control

Fuente: (EPA 2010a)

8.3.2.2.2 Tabla de registro de eficiencias

Esta tabla entrega información con respecto a la eficiencia de control que ha alcanzado la medida de control y el costo de aplicarla para cada contaminante.

Entre los campos de información que aparecen se encuentran los contaminantes afectados por las medidas de control (MP2,5, MP10, NO_X, SO₂, entre otros), la eficiencia de control, el costo por tonelada por reducir la emisión de un contaminante, o el tipo de ecuación que se usará para calcular los costos.

A continuación aparece una descripción de los campos más importantes. Los campos destacados en **negrita** identifican como única a cada fila en la tabla, esto significa que solo existe una única combinación de estas columnas (CMAbbreviation, Pollutant, Locale, etc.), y representan la llave primaria de la tabla.

Tabla 8-3 Descripción de los campos de la tabla de registro de eficiencias

Etiqueta de columna	Descripción del campo
CMAbbreviation	Abreviación única de la medida de control. Para que sea válido debe ser igual al valor de la CMAbbreviation de la tabla resumen.
Pollutant	Es el contaminante que es afectado por la medida de control. Se considera un único contaminante, independiente de que las emisiones hayan aumentado o reducido. Este puede ser el contaminante mayor (ver Tabla 8-2, en etiqueta "MajorPoll") o cualquier otro que sea afectado. Estos pueden ser: MP10, MP2,5, MP_METAL, CE, CO, SO ₂ , NO _X , Hg, NH ₃ , CO, COV.
Locale	Área particular del país en la que se aplica este registro. Si el campo está vacío, se asume que la información de la medida de control se aplica en todo el país.
Effective Date	Fecha en la que un registro particular de eficiencia pasa a ser efectivo a escala nacional o en un lugar específico. Si el campo está en blanco se aplica en cualquier fecha.
NEIExistingDevCode	Este campo sólo se rellena cuando la medida específica fue aplicada a la fuente.
MinEmissions	Indica el valor mínimo de emisiones que se debe cumplir para que el registro de la base de datos pueda ser aplicado.
MaxEmissions	Indica el valor máximo de emisiones que se debe cumplir para que el registro de la base de datos pueda ser aplicado.
ControlEfficiency	Eficiencia de control lograda cuando la medida se aplica a la fuente. Se usa en porcentaje de reducción (%). Puede llegar a ser negativa en el caso de que haya un perjuicio al bienestar social (beneficio negativo). Valores de la base de datos van de 7 a 100%
CostYear	Año base para el capital y el costo anual estimado.
CostPerTon	Costo asociado a reducir cada tonelada de un contaminante específico. Puede ser un valor positivo en el caso de que sea un costo o un valor negativo si es que se asocia a una ganancia.
RuleEff	Es la efectividad de la norma de la medida. Se define como la capacidad de un programa regulatorio de alcanzar todas las reducciones de emisiones con total conformidad en todas las fuentes y en todo momento. Un 100% significa que todas las fuentes de emisión están cumpliendo en todo momento. Se diferencia con la eficiencia de control en que esta última sólo considera la eficiencia de una medida de control en una fuente, mientras que la efectividad de la norma considera el cumplimiento de reducción de emisiones en todas las fuentes en que se aplique una regulación.
RulePen	Penetración de la norma de la medida. Se refiere al porcentaje de fuentes a las que se les deben aplicar la medida de control.
EquationType	Se refiere al tipo de ecuación de costo.
CapRecFactor	Es el factor de recuperación de capital, basado en la tasa de interés y la edad de los equipos en años.
DiscountRate	Es la tasa de descuento/interés usada para calcular costos de capital anual.
CapAnnRatio	Proporción del capital total invertido y los costos totales anuales

Fuente: (EPA 2010a)

Los datos referidos a los costos se deben escalar según el año de interés para considerar los efectos de la inflación y poder comparar valores más consistentemente. El ajuste se hace con la Ecuación 1, vista en la sección 8.3.1.2.1.

8.3.2.2.3 Tabla Source Classification Code (SCC)

Esta tabla identifica el SCC específico a la que cada medida de control se aplica. El SCC es un código que se utiliza para identificar el tipo de fuente de emisión. Actualmente existen alrededor de 11.000 SCC que se usan en los inventarios de emisión de EE.UU.

A continuación se entrega una tabla con una descripción de las etiquetas de las columnas. Las etiquetas de columnas que estén destacadas con **negrita** identifican como única a cada fila en la tabla, esto significa que solo existe una única combinación de estas columnas (CMAbbreviation, Pollutant, Locale, etc.).

Tabla 8-4 Descripción de los campos de la tabla SCC

Etiqueta de columna	Descripción
CMAbbreviation	Abreviación de la medida de control. Debe ser igual a la que aparece en la tabla resumen (y eficiencia de control).
SCC	Source Classification Code (SCC) que se aplica a la medida de control.
Status	Estado del código SCC: actual, inactivo o no existente.

Fuente: (EPA 2010a)

8.3.2.2.4 Tabla de ecuaciones

La tabla de ecuaciones contiene los parámetros que se usan en las ecuaciones de costo. A continuación una tabla con las descripciones de las etiquetas de columnas.

Tabla 8-5 Descripción de los campos de la tabla de ecuaciones

Etiqueta de columna	Descripción			
CMAbbreviation	Abreviación de la medida de control. Debe ser igual a la que aparece en la tabla resumen.			
CMEqnType Tipo de ecuación, existen 11 tipos de ecuaciones.				
Pollutant	Contaminante cuyas emisiones están siendo afectadas para el cual la ecuación está calculando los costos. Las emisiones pueden ser disminuidas o aumentadas. Generalmente es el contaminante mayor (Ver Tabla 8-2, "MajorPoll").			
CostYear	Año base que se usa para calcular el capital y el costo anual.			
Var i	Valor de la variable i de la ecuación de costo. i=1,210			

Fuente: (EPA 2010a)

8.3.2.2.5 Tabla de referencias y propiedades

La tabla de referencias posee todas las referencias que son usadas en el campo "DataSource" de la tabla resumen. No posee mayor complejidad.

Por otro lado, la tabla de propiedades posee información específica de algunas medidas de control o información que no se encuentra en las tablas descritas anteriormente. Esta tabla no posee campos pre-definidos lo que permite al usuario agregar la información que estime pertinente según su conveniencia.

8.3.3 Medidas y Ecuaciones de Costo

CoST estima los costos de las medidas de dos maneras: en primer lugar mediante ecuaciones de costo cuando la información de entrada está disponible, y en caso contrario, se aplica un factor de costo unitario en USD por tonelada de contaminante reducido. A continuación se describirán los sectores y medidas de posible aplicación en CoST, además de los parámetros utilizados para estimar las eficiencias de reducción y costos asociados a la implementación de una medida de control específica.

8.3.3.1 Fuentes consideradas

El modelo CoST considera 3.893 códigos SCC (Source Classification Code), los cuales se pueden agrupar en 45 categorías del inventario de emisiones (Tabla 8-6), excluyendo aquellas asociadas a fuentes móviles. Estas categorías además pueden contener fuentes de emisión tanto puntuales como areales.

Tabla 8-6 Sectores y Categorías del inventario de emisiones considerados por CoST

Sector	Categoría
Agricultura	Cultivos y polvo de ganado
	Desechos de ganado
Polvo (Emisiones Fugitivas)	Polvo de Construcción
	Polvo de calles pavimentadas
	Polvo de calles no pavimentadas
Fuegos (Quemas)	Quema Agrícola
	Quemas Forestales Planificadas
Combustión de combustibles	Generación Eléctrica
	Calderas Industriales
	Comercial/Institucional
	Residencial
Procesos Industriales	Producción de cemento
	Producción de químicos
	Metales ferrosos
	Minería
	NEC
	Metales no-ferrosos
	Producción de Petróleo y Gas
	Refinerías de Petróleo
	Celulosa y Papel
	Almacenamiento y Transferencia
Solventes	Uso de solventes a nivel de comercial y consumidores
	Desengrase
	Lavaseco (Lavanderías)
	Artes gráficas
	Recubrimiento de Superficie Industrial y Uso de Solvente
	Recubrimiento de Superficie no-Industrial
Misceláneo	NEC no-industrial
	Disposición de residuos
	Cocina comercial
	Estaciones de gas

Fuente: (EPA 2010b)

8.3.3.2 Medidas y Eficiencia de Reducción

CoST utiliza 121 distintas medidas de control, las que presentan costos y eficiencias diferentes al ser aplicadas a distintos tipos de fuente y sectores. En las tablas a continuación (Tabla 8-7 y Tabla 8-8) se presentan medidas utilizadas en CoST para cada tipo de fuente (puntuales y areales) además de las eficiencias de reducción para MP10, MP2,5, NO_X y SO₂. Se presentan los valores promedio por medida, esto debido a que cada medida es potencialmente aplicada en diversas categorías de fuentes presentando valores de eficiencia distintos para cada una de ellas.

Tabla 8-7 Eficiencia de Reducción Fuentes Puntuales

Sector	Tecnología	MP10	MP2,5	NO _x	SO ₂
	Cambio de combustible – Alto a bajo contenido de S	21.4	21.4		60.0
	Carbón bajo en NO _x y toberas de aire con sobrecombustión de acoplamiento cruzado			38.2	
	Carbón bajo en NO _X y toberas de aire con sobrecombustión de acoplamiento cruzado y separada			55.7	
	Carbón bajo en NO _X y toberas de aire con sobrecombustión separadas			30.5	
	Desulfuración de gases de salida mediante depurador húmedo				90.0
	Filtro de tela – agitador mecánico	98.6	98.6		
PTIPM:	Filtro de tela – Tipo limpiado con aire reverso	99.3	99.3		
Fuentes puntuales	Filtro de Tela (Pulso a chorro)	99.3	99.3		
agrupadas al IPM	Lavado de carbón	35.0	35.0		35.0
(Modelo Integrado de	Oxidación forzada de caliza				90.0
Planificación)	Precipitador Electrostático Seco	98.0	95.0		
	Quemador de bajo NO _x			40.6	
	Quemador de bajo NO _x + sobrecombustión			55.6	
	Re combustión de Gas Natural			50.0	
	Reducción Catalítica Selectiva			86.0	
	Reducción No-Catalítica Selectiva			41.0	
	Secador de Cal por Aspersión				95.0
	Absorbente Seco				91.4
	Absorción Dual				99.0
	Absorción Extendida			90.5	
	Aditivo de catalizador				43.0
	Ajuste razón aire-combustible			20.0	
	Ajuste razón aire-combustible y retardo de encendido			30.0	
PTNOIPM:	Aumento del % de conversión de ro para cumplir con la norma NSPS (99.7)				86.3
Fuentes puntuales no	Bajo exceso de aire			13.0	
agrupadas al IPM (Modelo Integrado de Planificación)	Cambio de combustible	80.0	80.0		75.0
	Catalizador de oxidación de Diesel (cuando el filtro de partículas no es factible)	20.0			
	Combustible bajo en S		80.0		80.0
	Combustión con oxígeno			85.0	
	Combustión de baja emisión			87.0	
	Combustión de baja emisión (baja velocidad)			87.0	
	Combustión de baja emisión (velocidad media)			87.0	
	Depuración de aminos – paso adicional de gas de salida				97.8

Sector	Tecnología	MP10	MP2,5	NO _x	SO ₂
	Depurador de placa de choque	64.0	64.0		
	Depurador tipo venturi	88.2	74.2		
	Desulfuración de Gas de Horno de Coque				90.0
	Desulfuración de gases de salida				90.0
	Desulfuración Húmeda de Gases de Salida				92.7
	Filtro de papel/no-tejido – Tipo colector de cartucho	99.1	99.1		
	Filtro de partículas Diesel	85.0	90.0		
	Filtro de tela – agitador mecánico	99.3	99.3		
	Filtro de tela – Tipo limpiado con aire reverso	98.8	98.8		
	Filtro de Tela (Pulso a chorro)	98.5	98.5		
	IDIS				40.0
	Impulso Eléctrico			10.0	
	Inyección de Agua			63.0	
	Inyección de sorbente al ducto				40.0
	Inyección de Vapor			80.0	
	Planta de ácido sulfúrico				80.0
	Pre-calentamiento de vidrio residual			25.0	
	Precipitador Electrostático	95.0	75.0		
	Precipitador Electrostático Húmedo – Tipo Placa de Alambre	99.3	97.3		
	Precipitador Electrostático Seco	97.6	94.7		
	Quemado a mitad de horno			30.0	
	Quemador de bajo NO _x			47.0	
	Quemador de bajo NO _x + Reducción Catalítica Selectiva			89.1	
	Quemador de bajo NO _x + Reducción No-Catalítica Selectiva			78.0	
	Quemador de bajo NO _x + Sobrecombustión			51.2	
	Quemador de bajo NO _x y recirculación de gases de salida			56.7	
	Quemador de bajo NO _x y recirculación de gases de salida + Sobrecombustión			80.0	
	Quemador Ultra Bajo NO _x			74.0	
	Re-combustión de carbón			50.0	
	Re-combustión de Gas Natural			51.3	
	Recorte de oxígeno e inyección de agua			65.0	
	Recuperación de azufre y/o tratamiento de gases de salida				99.8
	Reducción Catalítica no-selectiva			92.0	
	Reducción Catalítica Selectiva			84.7	

Sector	Tecnología	MP10	MP2,5	NO _x	SO ₂
	Reducción Catalítica Selectiva e Inyección de Agua			91.7	
	Reducción Catalítica Selectiva e Inyección de Vapor			95.0	
	Reducción Catalítica Selectiva y Quemador de Bajo NO _X			94.0	
	Reducción No-Catalítica Selectiva			50.0	
Reducción No-Catalítica Selectiva – Amonio				52.5	
Reducción No-Catalítica Selectiva - Urea Reducción térmica				55.7	
				81.0	
	Retardo de Encendido			23.8	
	Tecnología de inyección de bio-sólidos			23.0	
PTFIRE:	Aumento de humedad de combustible	50.0	50.0		
Fuentes puntuales de quema	Sustituir astillado en vez de quema		75.0		·

Fuente: (EPA 2010b)

Tabla 8-8 Eficiencia de Reducción Fuentes Areales

Sector	Tecnología	MP10	MP2,5	NO _x	SO ₂
	Barrido al vacío	47.7	50.7		
AFDUST: Polvo (Emisiones	Estabilización química	37.5	24.9		
Fugitivas)	Pavimentación con asfalto caliente	65.4	61.7		
	Plan de control de polvo	62.5	37.5		
	Adición de químicos a desechos				75.0
	Calentador de Agua y calentador de espacios con quemador de bajo NO _X			27.8	
	Cambio de combustible	80.0	80.0		75.0
	Combustible bajo en S	80.0	80.0	10.0	75.0
NONPT: No – puntuales	Estufas a Leña que cumplen NSPS	9.0	9.0		
no pantadies	Inserto de chimenea		98.0		
	Oxidante catalítico	83.0	83.0		
	Plan de Conservación de Suelos	12.1	12.1		
	Precipitador Electrostático	99.0	99.0		

Sector	Tecnología	MP10	MP2,5	NO _x	SO ₂
	Precipitador Electrostático para Cocina Comercial	99.0	99.0		
	Programa de Educación y Asesoría	42.5	42.5		
	Prohibición episódica (Diario)			100.0	
	Prohibición Estacional			100.0	
	Quema de propano/fardo de paja Quemador de bajo NO _X		58.9		
				7.0	
	Quemador de bajo NO _X (1997 AQMD)			75.0	
RACT a 25 tpy (Quemador de bajo NO _X)				29.3	
	RACT a 50 tpy (Quemador de bajo NO _x)			29.3	
	Reemplazo de calentador de agua			27.2	
	Riego	50.0	25.0		
	Sustituir rellenos sanitarios en vez de quema abierta	75.0			

Fuente: (EPA 2010b)

8.3.3.3 Costos

Existen 2 formas de obtener el costo de la aplicación de las medidas de control:

- 1. Usando un factor de "dólares por tonelada de contaminante reducido"
- 2. Mediante ecuaciones de costo.

La primera se aplica principalmente en fuentes específicas. Este factor de costo-portonelada se usa cuando la información disponible de los costos de la medida es escasa o varía con variables específicas de la fuente. El factor costo-por-tonelada es el principal método para estimar los costos de las fuentes no puntuales (areales). Estos son generados a partir del costo anual de la medida de control en una fuente o un conjunto de fuentes, divido por la cantidad real o estimada de contaminante reducido. Hay que destacar que este método posee una gran incertidumbre cuando se aplica a un pequeño número de fuentes en una escala local.

La segunda manera considera variables específicas de la fuente, cuando la información está disponible. Las ecuaciones de costo generalmente se usan para medidas de control de fuentes puntuales, no para fuentes no puntuales (areales). Cada tipo de ecuación se aplica a la fuente sobre el contaminante principal (ver Tabla 8-2, "MajorPoll") o a un grupo de fuentes de ciertos contaminantes.

Primero, la aplicación de las ecuaciones se define según tipo el tipo de contaminante que es controlado, estos pueden ser NO_X , SO_2 o MP. Luego, se define el tipo de fuentes de dicho contaminante, que se dividen en 2: fuentes puntuales agrupadas al IPM (ptipm) o fuentes puntuales no agrupadas al IPM (ptnonipm).

Los costos principales que se calculan son el costo capital, costo de operación y mantención (OyM) y costo total anualizado, definidos como:

- ✓ Costo capital: costo de aplicar o implementar una medida de control a una fuente de emisión.
- ✓ **Costo OyM:** costo de operación y mantención de tener una medida de control en una fuente.
- ✓ **Costo total anualizado:** costo anual de aplicar una medida de control que incluye el costo capital y el costo de OyM, considerando los efectos de valor presente.

Existen 11 tipos de ecuaciones, y el cálculo de estos valores (costos) depende del tipo de ecuación que se use. Los parámetros a utilizar se obtienen de los inventarios de emisión o son específicos de las medidas de control, y se obtienen de tablas con valores dados. En algunos casos el costo OyM se obtiene de la resta entre el costo anualizado total y el

costo capital, y en otros casos el costo anualizado total se obtiene de la suma entre el costo capital anualizado y el costo OyM, cumpliéndose siempre la siguiente relación:

OyM=CostoAnualizadaotal-CostoCapital

Ecuación 2 – Costos de operación y mantención (OyM)

Otro tipo de costo que también es importante nombrar es el costo de capital anualizado, que a veces es usado para calcular las variables descritas anteriormente. Este se presenta de la siguiente forma:

Costo de capital anualizado: es el costo anualizado de instalar una medida de control en una fuente de emisión, considerando una tasa de interés y la expectativa de vida (años) de la medida.

Para poder aplicar las ecuaciones de costo de manera correcta, es necesario contar con información característica de las fuentes a evaluar. Esta información está disponible en los inventarios de emisiones, y entre ellas, se debe contar con la capacidad de las plantas (MW), capacidad de diseño de calderas (MMBTU/hr) y caudal de gases de la chimenea (ft³/min o scfm).

Los valores utilizados como input para dichas ecuaciones se encuentran disponibles en la base de datos de fuentes estacionarias de CoST³³.

En la tabla a continuación se presenta un resumen sobre los contaminantes afectados por cada tipo de ecuación:

³³http://www.epa.gov/ttn/ecas/cost.htm

Tabla 8-9 Ecuaciones de Costo para modelo CoST

Ecuación	MP	NO _x	SO ₂	Observaciones
Tipo 1		✓	✓	
Tipo 2		✓		Se utiliza costo unitario para calderas con capacidad > 2.000 MMBTU/hr
Tipo 3			✓	
Tipo 4			✓	
Tipo 5			✓	
Tipo 6			✓	
Tipo 8	✓			Se utiliza un costo unitario para fuentes con gasto volumétrico < 5 acfm
Tipo 9	✓			
Tipo 10	✓			
Tipo 11			✓	Se utiliza un costo unitario por tonelada reducida

Fuente:(EPA 2010c)

8.3.3.3.1 Ecuación Tipo 1

Las ecuaciones tipo 1 se utilizan para estimar los costos de tecnologías que reducen NO_X y SO_2 a fuentes puntuales del IPM (ptipm). No se considera el uso de costos por defecto (USD/ton) para la aplicación de medidas de reducción de NO_X y SO_2 para este tipo de fuentes (ptipm).

Además, para el caso de la instalación de un Reductor Catalítico Selectivo a Calderas en base a carbón, se aplica un factor de escalamiento cuando la capacidad de la planta es menor a 500 MW (cuando es mayor a 500 MW el factor es 1).

Estas ecuaciones utilizan como dato de entrada información de la tecnología y de la fuente a evaluar, además de datos económicos como la tasa de interés:

- Tecnología
 - Costo de Capital
 - Costo Fijo de OyM
 - Costo Variable de OyM
- Fuente
 - o Capacidad (MW)
 - Vida útil (años)

Los parámetros de *input* específicos a las tecnologías de control se presentan en la sección de anexos (Sección 8.3.3.4), y las ecuaciones utilizadas se presentan a continuación.

Para estimar el costo de capital anualizado, es necesario estimar el factor de escalamiento, el costo de capital y el factor de recuperación de capital.

El factor de escalamiento se estima en base al tamaño de planta del escalamiento (SF_MS), la capacidad de la planta en MW (Capacidad) y el exponente de escalamiento (SF_E):

$$FactordeEscalamiento(SF) = \left(\frac{SF_MS}{Capacidad}\right)^{SF_E}$$

El costo de capital se estima en base al multiplicador del costo de capital (CCM), la capacidad de la planta en MW (Capacidad), y el factor de escalamiento (SF):

$$\textit{Costo de Capital} \big(\textit{USD}\big) = \textit{CCM} \bigg(\frac{\textit{USD}}{\textit{kW}}\bigg) \times \textit{Capacidad} \big(\textit{MW}\big) \times \textit{SF} \times 1.000 \bigg(\frac{\textit{kW}}{\textit{MW}}\bigg)$$

El factor de recuperación de capital se estima en base a la tasa de interés (i: CoST utiliza por defecto 7%) y la vida útil del equipo (vu):

Factor Recuperacion Capital =
$$\frac{i \times (1+i)^{vu}}{(1+i)^{vu}-1}$$

Con lo anterior es posible estimar el costo de capital anualizado, como el producto del costo de capital y el factor de recuperación de capital:

$$CC_Anual\left(\frac{USD}{a\tilde{n}o}\right) = Costode Capital \times Factor Recuperacion Capital$$

El costo de operación y mantención (OyM) se estima en base al costo de OyM fijo y el costo de OyM variables, según las siguientes ecuaciones:

El costo de OyM fijo se estima en base al multiplicador de dicho costo (OM_FCM, específico a cada medida), y la capacidad de la planta en MW (Capacidad):

$$CF _OyM\left(\frac{USD}{a\tilde{n}o}\right) = OM _FCM\left(\frac{USD}{kW - a\tilde{n}o}\right) \times Capacidad(MW) \times 1.000\left(\frac{kW}{MW}\right)$$

El costo de OyM variable se estima en base el multiplicador de dicho costo (OM_VCM), la capacidad de la planta en MW (Capacidad), el factor de planta (FP) y la cantidad de horas por año (8.760):

$$CV _OyM \left(\frac{USD}{a\tilde{n}o} \right) = OM _VCM \left(\frac{USD}{MWh} \right) \times Capacidad(MW) \times FP \times 8.760 \left(\frac{hrs}{a\tilde{n}o} \right)$$

El costo de OyM total está dado por la suma de los costos de OyM fijos y variables:

$$CT _OyM \left(\frac{USD}{a\tilde{n}o} \right) = CF _OyM \left(\frac{USD}{a\tilde{n}o} \right) + CV _OyM \left(\frac{USD}{a\tilde{n}o} \right)$$

Finalmente, el costo total anualizado, se estima como la suma entre el costo de capital anualizado y el costo total de OyM:

$$CT_Anual\left(\frac{USD}{a\tilde{n}o}\right) = CC_Anual\left(\frac{USD}{a\tilde{n}o}\right) + CT_OyM\left(\frac{USD}{a\tilde{n}o}\right)$$

8.3.3.3.2 Ecuación Tipo 2

Las ecuaciones tipo 2 se utilizan para estimar los costos de aplicar tecnologías que reducen NO_X en algunas fuentes puntuales que no pertenecen al IPM (ptnonipm), usando como información de entrada la capacidad de la caldera obtenida del inventario de emisiones, además de una componente de escalamiento obtenida de los parámetros de las tecnologías potencialmente aplicables.

Las ecuaciones tipo 2 se utilizan para aquellas fuentes que tienen capacidades que no superan los 2.000 MMBTU/hr, mientras que para aquellas fuentes que superan dicho umbral se consideran valores por defecto en dólares por tonelada reducida.

Esta ecuación permite además, aplicar una medida de manera incremental con la existencia previa de otra medida que reduce NO_X . Para estos casos, se presentan valores alternativos tanto para las ecuaciones como para costos por defecto en dólares por tonelada reducida. Estos valores ya consideran la inefectividad incremental por aplicar control en fuentes que ya poseen control anterior.

Los parámetros de *input* específicos a las tecnologías de control se presentan en la sección de anexos (sección 8.3.3.5) mientras que los costos por defecto para las fuentes que no cumplen con las condiciones de capacidad (Cap< 2.000 MMBTU/hr). Las ecuaciones utilizadas para estimar los costos se presentan más abajo.

A continuación se presentarán las ecuaciones de estimación de costos en el caso en que no existen tecnologías de control anteriores.

El costo de capital se estima tomando en cuenta la capacidad de diseño de la planta (cap_diseño, obtenido generalmente del inventario de emisiones), además de un multiplicador (Def_CCM) y un exponente (Def_CCE) por defecto asociados al costo de capital:

$$\textit{Costode Capita(USD)} = \textit{Def} _\textit{CCM} \bigg(\frac{\textit{USD}}{\textit{MMBTU/hr}} \bigg) \times \bigg(\textit{cap_dise} \tilde{\textit{no}} \bigg(\frac{\textit{MMBTU}}{\textit{hr}} \bigg) \bigg)^{\textit{Def_CCE}} \bigg)$$

El factor de recuperación de capital se estima en base a la tasa de interés (i: CoST utiliza por defecto 7%) y la vida útil del equipo (vu):

Factor Recuperacion Capital =
$$\frac{i \times (1+i)^{vu}}{(1+i)^{vu}-1}$$

Con lo anterior es posible estimar el costo de capital anualizado, como el producto del costo de capital y el factor de recuperación de capital:

$$CC_Anual\left(\frac{USD}{a\tilde{n}o}\right) = Costode Capital \times Factor Recuperacion Capital$$

En este caso el costo de Operación y Mantención (OyM) se estima como la diferencia entre el costo total anualizado y el costo de capital anual. El costo total anualizado se estima en base a un multiplicador (Def_ACM) y un exponente (Def_ACE) por defecto del costo anual:

$$\textit{CT Anualizad} \\ \phi \\ \frac{\textit{USD}}{\textit{a}\tilde{\textit{no}}} \\) = \textit{Def} \\ _\textit{ACM} \\ \left(\frac{\textit{USD}/\textit{a}\tilde{\textit{no}}}{\textit{MMBTU}/\textit{hr}} \right) \\ \times \left(\textit{cap_dise}\tilde{\textit{no}} \\ \phi \\ \frac{\textit{MMBTU}}{\textit{hr}} \right) \right)^{\textit{Def_ACE}} \\ \frac{\textit{MMBTU}}{\textit{hr}} \\) \\ \frac{\textit{Cop_dise}\tilde{\textit{no}}}{\textit{MMBTU}} \\ + \frac{\textit{Cop_dise}}{\textit{MMBTU}} \\ +$$

Y el costo de operación y mantención:

$$C_{OyM} \left(\frac{USD}{a\tilde{n}o} \right) = CT \ Anualizado \left(\frac{USD}{a\tilde{n}o} \right) - CC_{Anual} \left(\frac{USD}{a\tilde{n}o} \right)$$

Para el caso en que ya existe una tecnología de control instalada anteriormente, el proceso de estimación de costos es el mismo, pero se utilizan los valores de multiplicadores y exponentes para costo de capital incremental y costo anual incremental, presentados también en la sección 8.3.3.5.

En el caso de que la capacidad de la planta exceda los 2.000 MMBTU/hr, se utilizan valores por defecto, que se encuentran disponibles en la tabla de la sección 8.3.3.6. Cuando no existen tecnologías de control instaladas anteriormente, el costo total anualizado se estima en base a la reducción de emisiones y el costo por defecto (Def CPT):

$$CT \ Anualizado \left(\frac{\textit{USD}}{\textit{año}} \right) = \textit{Reducci\'on Emisiones} \left(\frac{\textit{ton}}{\textit{a\~no}} \right) \times \textit{Def_CPT} \left(\frac{\textit{USD}}{\textit{ton}} \right)$$

Cuando existen tecnologías de control instaladas anteriormente, el costo total anualizado se estima en base a la reducción de emisiones con la nueva tecnología y el costo incremental por defecto (Inc CPT):

$$CT \ Anualizado \left(\frac{\textit{USD}}{\textit{año}} \right) = \textit{Reducci\'on Emisiones} \left(\frac{\textit{ton}}{\textit{a\~no}} \right) \times \textit{Inc_CPT} \left(\frac{\textit{USD}}{\textit{ton}} \right)$$

El costo de capital se estima en base al costo total anualizado y la razón capital-anual (R CA, obtenida en la tabla de la sección 8.3.3.6).

Costo de Capital(USD) = CT Anualizado
$$\times$$
R_CA

El factor de recuperación de capital se estima en base a la tasa de interés (i: CoST utiliza por defecto 7%) y la vida útil del equipo (vu):

Factor Recuperacion Capital =
$$\frac{i \times (1+i)^{vu}}{(1+i)^{vu}-1}$$

Y ahora es posible estimar el costo de capital anualizado:

$$CC_Anual\left(\frac{USD}{a\tilde{n}o}\right) = Costode Capital \times Factor Recuperacion Capital$$

Y el costo de operación y mantención:

$$C_{OyM} \left(\frac{USD}{a\tilde{n}o} \right) = CT \ Anualizado \left(\frac{USD}{a\tilde{n}o} \right) - CC_{Anual} \left(\frac{USD}{a\tilde{n}o} \right)$$

8.3.3.3.3 Ecuación Tipo 3

Las ecuaciones 3 a la 6 y la 11, se utilizan para estimar los costos de tecnologías que reducen SO_2 en fuentes puntuales que no pertenecen al IPM (las fuentes puntuales IPM utilizan ecuaciones Tipo 1). La variable primaria utilizada es el gasto volumétrico de la chimenea (ft^3 /min).

Para estimar los costos de tecnologías mediante ecuaciones tipo 3, se estima el costo de capital anualizado de manera distinta dependiendo del gasto volumétrico de la chimenea en cuestión. En ambos casos se toma como dato de entrada un factor de *retrofit (FR)*, un factor de gasto volumétrico (FGV, equivalente a 0,486 [kW/acfm]), un factor de costo de capital (FCC, equivalente a 192 [USD/kW]) y el gasto volumétrico (ft³/min).Los parámetros a utilizar para estas ecuaciones se presentan en los anexos (sección 8.3.3.7).

Cuando el gasto volumétrico es mayor o igual a 1.028.000 acfm:

Costo Capital =
$$FR \times 0.486 \left(\frac{kW}{acfm} \right) \times 192 \left(\frac{USD}{kW} \right) \times GV \left(\frac{ft^3}{s} \right) \times 60 \left(\frac{s}{min} \right)$$

Cuando el gasto volumétrico es menor a 1.028.000 acfm:

$$\textit{CostoCapital} = \left(\frac{1.028.000}{GV \times 60}\right)^{0.6} \times \textit{FR} \times \textit{0,486} \left(\frac{\textit{kW}}{\textit{acfm}}\right) \times \textit{192} \left(\frac{\textit{USD}}{\textit{kW}}\right) \times \textit{GV} \left(\frac{\textit{ft}^3}{\textit{s}}\right) \times \textit{60} \left(\frac{\textit{s}}{\textit{min}}\right)$$

El factor de recuperación de capital se estima en base a la tasa de interés (i: CoST utiliza por defecto 7%) y la vida útil del equipo (vu):

Factor Recuperacion Capital =
$$\frac{i \times (1+i)^{vu}}{(1+i)^{vu}-1}$$

Con lo anterior es posible estimar el costo de capital anualizado, como el producto del costo de capital y el factor de recuperación de capital:

$$CC_Anual\left(\frac{USD}{a\tilde{n}o}\right) = Costode Capital \times Factor Recuperacion Capital$$

El costo de operación y mantención fijo, se estima en base al mismo factor de gasto volumétrico anterior (0,486 [kW/acfm]), una tasa fija de costo de OyM (6,9 [USD/kW-año]) y el gasto volumétrico de la chimenea (ft³/min):

$$CF_OyM\left(\frac{USD}{a\tilde{n}o}\right) = 0,486\left(\frac{kW}{acfm}\right) \times 6,9\left(\frac{USD}{kW - a\tilde{n}o}\right) \times GV\left(\frac{ft^3}{s}\right) \times 60\left(\frac{s}{min}\right)$$

El costo de operación y mantención variable, se estima en base al mismo factor de gasto volumétrico anterior (0,486 [kW/acfm]), una tasa variable de costo de OyM (0,0015 [USD/kWh]), la cantidad de horas por año (8.760 hrs/año) y el gasto volumétrico de la chimenea (ft³/min):

$$CV_OyM\left(\frac{USD}{a\tilde{n}o}\right) = 0,486\left(\frac{kW}{acfm}\right) \times 0,0015\left(\frac{USD}{kWh}\right) \times 8.760\left(\frac{h}{a\tilde{n}o}\right) \times GV\left(\frac{ft^3}{s}\right) \times 60\left(\frac{s}{min}\right)$$

El costo de OyM total está dado por la suma de los costos de OyM fijos y variables:

$$CT _OyM\left(\frac{USD}{a\tilde{n}o}\right) = CF _OyM\left(\frac{USD}{a\tilde{n}o}\right) + CV _OyM\left(\frac{USD}{a\tilde{n}o}\right)$$

Finalmente, el costo total anualizado, se estima como la suma entre el costo de capital anualizado y el costo total de OyM:

$$CT_Anual\left(\frac{USD}{a\tilde{n}o}\right) = CC_Anual\left(\frac{USD}{a\tilde{n}o}\right) + CT_OyM\left(\frac{USD}{a\tilde{n}o}\right)$$

8.3.3.3.4 Ecuación Tipo 4 - 6

El costo de capital para las tecnologías que utilizan las ecuaciones tipo 4-6 se estima en base a un costo de capital fijo (CCF) y un costo de capital escalado basado en la planta modelo (CCE), y el gasto volumétrico de la chimenea (ft³/min):

Costo Capital = CCF (USD) + CCE
$$\left(\frac{USD}{acfm}\right) \times GV \left(\frac{ft^3}{s}\right) \times 60 \left(\frac{s}{min}\right)$$

Los valores de costo de capital fijo y costo de capital escalado para cada tipo de ecuación se presentan a continuación:

Tabla 8-10 Costo de Capital Fijo y Escalado Ecuaciones Tipo 4-6

Ecuación	Costo de Capital Fijo (CCF)	Costo de Capital Escalado (CCE)
	USD	USD/acfm
Tipo 4	990.000	9,836
Tipo 5	2.882.540	244,74
Tipo 6	3.449.803	135,86

Fuente:(EPA 2010c)

El factor de recuperación de capital se estima en base a la tasa de interés (i: CoST utiliza por defecto 7%) y la vida útil del equipo (vu):

Factor Recuperacion Capital =
$$\frac{i \times (1+i)^{vu}}{(1+i)^{vu}-1}$$

Con lo anterior es posible estimar el costo de capital anualizado, como el producto del costo de capital y el factor de recuperación de capital:

$$CC_Anual\left(\frac{USD}{a\tilde{n}o}\right) = Costode Capital \times Factor Recuperacion Capital$$

Para estimar el costo de operación y mantención se utilizan valores estándar para el costo fijo y un costo variable unitario:

Tabla 8-11 Costo Fijo y Variable de OyM Ecuaciones Tipo 4-6

Ecuación	Costo fijo de OyM CF_OyM	Costo variable unitario CV_U
	USD/año	USD/acfm
Tipo 4	75.800	12,82
Tipo 5	749.170	148,4
Tipo 6	797.667	58,84

Fuente: (EPA 2010c)

El costo variable de OyM se estima en base al costo variable unitario (CV U):

$$CV_{OyM}\left(\frac{USD}{a\tilde{n}o}\right) = CV_{U}\left(\frac{USD}{acfm}\right) \times GV\left(\frac{ft^{3}}{s}\right) \times 60\left(\frac{s}{min}\right)$$

El costo de OyM total está dado por la suma de los costos de OyM fijos y variables:

$$CT _OyM \left(\frac{USD}{a\tilde{n}o} \right) = CF _OyM \left(\frac{USD}{a\tilde{n}o} \right) + CV _OyM \left(\frac{USD}{a\tilde{n}o} \right)$$

Finalmente, el costo total anualizado, se estima como la suma entre el costo de capital anualizado y el costo total de OyM:

$$CT_Anual\left(\frac{USD}{a\tilde{n}o}\right) = CC_Anual\left(\frac{USD}{a\tilde{n}o}\right) + CT_OyM\left(\frac{USD}{a\tilde{n}o}\right)$$

8.3.3.3.5 Ecuación Tipo 8

Esta ecuación aplica para las fuentes puntuales (IPM y no-IPM) que reducen material particulado (MP). La ecuación utiliza el gasto volumétrico de la chimenea (scfm) como variable primaria. En los casos en que dicho gasto es menor a 5 pies cúbicos por minuto (cfm), se aplica un costo unitario por defecto.

Si bien estas medidas se aplican para reducir MP10, también se produce una reducción de material particulado fino (MP2,5). En el caso en que la fuentes ya tiene instalada una tecnología de control, se aplican costos incrementales. Sin embargo los costos utilizados son los mismos para fuentes controladas y no controladas.

Los datos de entrada para estimar los costos, se presentan en los anexos (sección 8.3.3.9).

El costo de capital total se estima en base a un factor de costo de capital (CC_F) y el gasto volumétrico (ft³/min):

Costo Capital =
$$CC_F\left(\frac{USD}{acfm}\right) \times GV\left(\frac{ft^3}{s}\right) \times 60\left(\frac{s}{min}\right)$$

El factor de recuperación de capital se estima en base a la tasa de interés (i: CoST utiliza por defecto 7%) y la vida útil del equipo (vu):

Factor Recuperacion Capital =
$$\frac{i \times (1+i)^{vu}}{(1+i)^{vu}-1}$$

Con lo anterior es posible estimar el costo de capital anualizado, como el producto del costo de capital y el factor de recuperación de capital:

$$CC_Anual\left(\frac{USD}{a\tilde{n}o}\right) = Costode Capital \times Factor Recuperacion Capital$$

El costo de operación y mantención, se estima en base a un factor de costo de operación y mantención (C OyM F) y el gasto volumétrico (ft³/min):

$$CT_OyM = C_OyM_F\left(\frac{USD}{acfm}\right) \times GV\left(\frac{ft^3}{s}\right) \times 60\left(\frac{s}{min}\right)$$

El costo total anualizado se estima en base al costo de capital anualizado, el costo de capital, un cargo fijo de 4% por impuesto, seguro y costos administrativos, además del costo total de operación y mantención:

$$CT_Anual\left(\frac{USD}{a\tilde{n}o}\right) = CC_Anual + 4\% \times CostoCapital + CT_OyM$$

En el caso en que no se cuente con información sobre el gasto volumétrico de la planta, los costos de capital, OyM y el costo total anualizado, se estiman utilizando valores de costo unitarios por tonelada reducida (ver en sección 8.3.3.10):

Costo de Capital:

$$\textit{CostoCapital}(\textit{USD}) = \textit{Reducci\'onEmisiones}(\textit{ton}) \times \textit{CPT_C}\left(\frac{\textit{USD}}{\textit{ton}}\right)$$

Costo de Operación y Mantención:

$$CT_OyM\left(\frac{USD}{a\tilde{n}o}\right) = ReducciónEmisiones\left(\frac{ton}{a\tilde{n}o}\right) \times CPT_OyM\left(\frac{USD}{ton}\right)$$

Costo Total Anualizado:

$$CT \ Anualizado \left(\frac{USD}{a\tilde{n}o}\right) = Reducción Emisiones \left(\frac{ton}{a\tilde{n}o}\right) \times CPT \left(\frac{USD}{ton}\right)$$

8.3.3.3.6 Ecuación Tipo 9

La ecuación Tipo 9 se utiliza para estimar el costo de instalar un filtro de tela con agitador mecánico a calderas industriales (Carbón o Gas/Petróleo).

Tabla 8-12 Parámetros Estimación Costo – Ecuación 9 (USD1990)

Tecnología	Tipo de Fuente		ncia de ntrol	Costo de Capital			Factores y constantes de Costo de OyM					М
		MP10	MP2,5	TECF	TECC	ECCM	ELF	ELC	DDF	DDC	BRF	BRC
Fabric Filter -	Utility Boilers – Coal	99	99	5,7	77.489	2,17	0.194	-15,96	0,7406	1,146	0,25	1.221
Mechanical Shaker	Utility Boilers - Gas/Oil	95	95	5,7	77.489	2,17	0.188	-19,58	0,0007	0,19	0,241	1.224

Fuente: (EPA 2010c)

El costo de capital se estima en base a un factor de costo total de equipo (TECF), una constante de costo total de equipo (TECC), el gasto volumétrico (ft³/min) y un multiplicador de costo de capital del equipo (ECCM):

$$CostoCapital(USD) = \left(TECF\left(\frac{USD}{acfm}\right) \times GV\left(\frac{ft^{3}}{s}\right) \times 60\left(\frac{s}{min}\right) + TECC(USD)\right) \times ECCM$$

El factor de recuperación de capital se estima en base a la tasa de interés (i: CoST utiliza por defecto 7%) y la vida útil del equipo (vu):

Factor Recuperacion Capital =
$$\frac{i \times (1+i)^{vu}}{(1+i)^{vu}-1}$$

Con lo anterior es posible estimar el costo de capital anualizado, como el producto del costo de capital y el factor de recuperación de capital:

$$CC_Anual\left(\frac{USD}{a\tilde{n}o}\right) = Costode Capital \times Factor Recuperacion Capital$$

El costo de operación y mantención se estima en base a un factor de electricidad (ELF), una constante de electricidad (ELC), un factor de disposición de polvo (DDF), una constante de disposición de polvo (DDC), un factor de reemplazo de bolsa (BRF), una constante de reemplazo de bolsa (BRC) y el gasto volumétrico (ft³/min):

$$CT_OyM\left(\frac{USD}{a\tilde{n}o}\right) = \left(ELF\left(\frac{USD}{acfm}\right) \times GV\left(\frac{ft^{3}}{s}\right) \times 60\left(\frac{s}{min}\right) + ELC(USD)\right)$$

$$+ \left(DDF\left(\frac{USD}{acfm}\right) \times GV\left(\frac{ft^{3}}{s}\right) \times 60\left(\frac{s}{min}\right) + DDC(USD)\right)$$

$$+ \left(BRF\left(\frac{USD}{acfm}\right) \times GV\left(\frac{ft^{3}}{s}\right) \times 60\left(\frac{s}{min}\right) + BRC(USD)\right)$$

Finalmente, el costo total anualizado, se estima como la suma entre el costo de capital anualizado y el costo total de OyM:

$$CT_Anual \left(\frac{USD}{a\tilde{n}o} \right) = CC_Anual \left(\frac{USD}{a\tilde{n}o} \right) + CT_OyM \left(\frac{USD}{a\tilde{n}o} \right)$$

8.3.3.3.7 Ecuación Tipo 10

La ecuación tipo 10 es para estimar los costos de reducción de MP2,5 en fuentes puntuales pertenecientes al IPM, específicamente en calderas industriales a carbón. Se consideran las siguientes medidas tecnológicas:

Tabla 8-13 Parámetros Estimación Costo – Ecuación 10 (USD2005)

Tecnología	Costo de	Costo Costo de Capital Variable de Costo Fijo de OyM OyM		Año de Costo		
	ССМ	CCE	CV_OyM_M	CF_OyM_M	CF_OyM_E	
	USD/kW			USD/kW- año		
Aglomerador	8	0.3	0.021	0	0	2005
Adding Surface Area of One ESP Field	13.75	0.3	0.009	0.24	0.3	2005
Adding Surface Area of Two ESP Fields	17.5	0.3	0.013	0.31	0.3	2005
Adding Surface Area of Two ESP Fields, an Agglomerator, and ID Fans	37.2	0.3	0.042	0.53	0.3	2005

Fuente: (EPA 2010c)

El factor de escalamiento del costo de capital (FECC) se estima en base al tamaño de planta del escalamiento (250 MW), la capacidad de la planta en MW (Capacidad) y el exponente de costo capital (CCE):

$$FECC = \left(\frac{250MW}{Capacidad}\right)^{CCE}$$

El costo de capital se estima en base al multiplicador del costo de capital (CCM), la capacidad de la planta en MW (Capacidad), y el factor de escalamiento (SF):

$$Costo de Capital(USD) = CCM \left(\frac{USD}{kW} \right) \times Capacidad(MW) \times FECC \times 1.000 \left(\frac{kW}{MW} \right)$$

El factor de recuperación de capital se estima en base a la tasa de interés (i: CoST utiliza por defecto 7%) y la vida útil del equipo (vu):

Factor Recuperacion Capital =
$$\frac{i \times (1+i)^{vu}}{(1+i)^{vu}-1}$$

Con lo anterior es posible estimar el costo de capital anualizado, como el producto del costo de capital y el factor de recuperación de capital:

$$CC_Anual\left(\frac{USD}{a\tilde{n}o}\right) = Costode Capital \times Factor Recuperacion Capital$$

El factor de escalamiento del costo fijo de operación y mantención (FEOyM) se estima en base al tamaño de planta del escalamiento (250 MW), la capacidad de la planta en MW (Capacidad) y el exponente de costo de operación y mantención (CF_OyM_E):

$$FEOyM = \left(\frac{250MW}{Capacidad}\right)^{CF_OyM_E}$$

El costo fijo de operación y mantención se estima en base al factor de escalamiento del costo fijo de operación y mantención (FEOyM), el multiplicador del costo fijo de operación y mantención (CF_OyM_M) y la capacidad de la planta en MW (Capacidad):

$$CF_OyM\left(\frac{USD}{a\tilde{n}o}\right) = FEOyM \times CF_OyM_M\left(\frac{USD}{kw - a\tilde{n}o}\right) \times Capacidad(MW) \times FECC \times 1.000\left(\frac{kW}{MW}\right)$$

El costo variable de operación y mantención se estima en base al multiplicador del costo variable de operación y mantención (CV_OyM_M), la capacidad de la planta en MW (Capacidad), el factor de planta (horas de uso por año) y la cantidad de horas por año (8.760 h/año):

$$CV_{OyM} \left(\frac{USD}{a\tilde{n}o} \right) = CF_{OyM}M \left(\frac{USD}{kwh} \right) \times Capacidad(MW) \times FP \times 8.760 \left(\frac{h}{a\tilde{n}o} \right)$$

El costo de OyM total está dado por la suma de los costos de OyM fijos y variables:

$$CT _OyM\left(\frac{USD}{a\tilde{n}o}\right) = CF _OyM\left(\frac{USD}{a\tilde{n}o}\right) + CV _OyM\left(\frac{USD}{a\tilde{n}o}\right)$$

El costo total anualizado se estima en base al costo de capital anualizado, el costo de capital, un cargo fijo de 4% por impuesto, seguro y costos administrativos, además del costo total de operación y mantención:

$$CT_Anual\left(\frac{USD}{a\tilde{n}o}\right) = CC_Anual + 4\% \times CostoCapital + CT_OyM$$

8.3.3.3.8 Ecuación Tipo 11

La ecuación tipo 11 se utiliza para estimar los costos de reducción de SO₂ en fuentes no puntuales que no pertenecen al IPM (ptnonipm).

El costo total anualizado se estima en base a la reducción de emisiones y el costo por tonelada reducida (CPT):

$$CT \ Anualizado \left(\frac{USD}{a\tilde{n}o} \right) = Reducción Emisiones \left(\frac{ton}{a\tilde{n}o} \right) \times CPT \left(\frac{USD}{ton} \right)$$

El costo de capital se estima en base al costo total anualizado y la razón capital-anual (R_CA, obtenida en la tabla de la sección 8.3.3.6).

$$Costode Capital(USD) = CT Anualizado \times R_CA$$

El factor de recuperación de capital se estima en base a la tasa de interés (i: CoST utiliza por defecto 7%) y la vida útil del equipo (vu):

Factor Recuperacion Capital =
$$\frac{i \times (1+i)^{vu}}{(1+i)^{vu}-1}$$

Y ahora es posible estimar el costo de capital anualizado:

$$CC_Anual\left(\frac{USD}{a\tilde{n}o}\right) = Costode Capital \times Factor Recuperacion Capital$$

Y el costo de operación y mantención:

$$C_{O}M\left(\frac{USD}{a\tilde{n}o}\right) = CT Anualizado\left(\frac{USD}{a\tilde{n}o}\right) - CC_{Anual}\left(\frac{USD}{a\tilde{n}o}\right)$$

8.3.3.4 Parámetros de Entrada - Ecuación Tipo 1

Tabla 8-14 Parámetros estimación de costos – Ecuación Tipo 1 – NO_X – Calderas Industriales

Tecnología	ССМ	OM_FCM	ом_усм	SF_MS	SF_E	CF	Vida Útil	Año de Costo
	USD/kW	USD/kW- año	USD/MWh	MW			años	
Quemador de bajo NO _x + Sobrecombustión	23.4	0.36	0.07	300	0.36	0.85	15	1999
Quemador de bajo NO _x	17.3	0.26	0.05	300	0.36	0.85	15	1999
Carbón bajo en NO_X y toberas de aire con sobrecombustión de acoplamiento cruzado	9.1	0.14	0	300	0.36	0.85	15	1999
Carbón bajo en NO _x y toberas de aire con sobrecombustión separadas	12.7	0.19	0.02	300	0.36	0.85	15	1999
Carbón bajo en NO_X y toberas de aire con sobrecombustión de acoplamiento cruzado y separada	14.5	0.22	0.02	300	0.36	0.85	15	1999
Recombustión de Gas Natural (Carbón y Ciclón)	26.9	0.41	0	200	0.35	0.65	20	1990
Recombustión de Gas Natural (Petróleo - Gas)	16.4	0.25	0.02	200	0.35	0.65	20	1990
Reducción Catalítica Selectiva (Carbón)	100	0.66	0.6	243	0.27	0.65	20	1999
Reducción Catalítica Selectiva (Ciclón)	90	0.53	0.37	200	0.35	0.65	20	1999
Reducción Catalítica Selectiva (Petróleo - Gas)	23.3	0.72	0.08	200	0.35	0.65	20	1990
Reducción No-Catalítica Selectiva (Carbón)	15.8	0.24	0.73	100	0.68	0.65	20	1990
Reducción No-Catalítica Selectiva (Ciclón)	8	0.12	1.05	100	0.58	0.65	20	1990
Reducción No-Catalítica Selectiva (Petróleo – Gas)	7.8	0.12	0.37	200	0.58	0.65	20	1990

Tabla 8-15 Parámetros estimación de costos – Ecuación Tipo 1 – SO₂

Tipo de Fuente	Tecnología	ССМ	OM_FCM	ом_усм	SF_MS	SF_E	Restricción	CF	Vida Útil	Año de Costo
	Desulfuración de gases de salida mediante depurador húmedo	166	6	6.3	500	0.6	%S<=2	0.65	15	1990
Caldera Industrial		149	5.4	0.83	500	0.6	2<%S<=3	0.65	15	1990
		174	6.3	1.8	500	0.6	%S>3	0.65	15	1990
	Secador de Cal por Aspersión	286	13	2.4	0	0	100<=MW<300	1	15	2004
		155	8	2.4	0	0	300<=MW<500	1	15	2004
Caldera Industrial – Carbón Bituminoso y Sub-bituminoso		131	6	2.4	0	0	500<=MW<700	1	15	2004
Siturnings y sub siturnings		118	5	2.4	0	0	700<=MW<1000	1	15	2004
		112	4	2.4	0	0	MW>=1000	1	15	2004
		468	19	1.4	0	0	100<=MW<300	1	15	2004
		230	11	1.4	0	0	300<=MW<500	1	15	2004
Caldera Industrial – Carbón Bituminoso y Sub-bituminoso	Oxidación forzada de caliza	174	9	1.4	0	0	500<=MW<700	1	15	2004
		142	8	1.4	0	0	700<=MW<1000	1	15	2004
		120	7	1.4	0	0	MW>=1000	1	15	2004

Fuente: (EPA 2010c)

114

8.3.3.5 Parámetros de Entrada - Ecuación Tipo 2

Tabla 8-16 Parámetros estimación de costos – Ecuación Tipo 2 - NO_X

Tipo de Fuente	Tecnología	Vida Útil						Valores Incrementales (con tecnología anterior)			
		vu	Def_CCM	Def_CCE	Def_ACM	Def_ACE	Inc_CCM	Inc_CCE	Inc_ACM	Inc_ACE	
Caldera - Carbón/Muro	Quemador de bajo NO _x	10	53,869	0.6	11,861	0.6	53,869	0.6	11,861	0.6	
Caldera - Carbón/Muro	Reducción Catalítica Selectiva	20	82,401	0.65	5,556	0.79	79,002	0.65	8,702	0.65	
Caldera – Petróleo Destilado – Gas Natural	Reducción Catalítica Selectiva	20	33,206	0.65	2,498	0.73	40,891	0.65	4,482	0.65	
Caldera – Carbón/Lecho Fluidizado	Reducción No-Catalítica Selectiva - Urea	20	15,973	0.6	4,971	0.6	15,973	0.6	3,059	0.6	
Caldera - Carbón	Reducción No-Catalítica Selectiva	20	110,488	0.42	3,441	0.73	67,094	0.42	7,514	0.42	
Caldera – Petróleo Destilado – Gas Natural – Fuel Oil	Reducción No-Catalítica Selectiva	20	62,149	0.42	2,012	0.72	48,003	0.42	5,244	0.42	
Caldera – Biomasa/Lecho Fluidizado	Reducción No-Catalítica Selectiva – Amonio	20	9,856	0.6	4,185	0.6	9,856	0.6	4,185	0.6	
IC Caldera – Biomasa//Stoker	Reducción No-Catalítica Selectiva - Urea	20	65,820	0.36	17,777	0.35	65,820	0.36	17,777	0.35	
	Quemador de bajo NO _x	15	71,281	0.51	7,826	0.51	71,281	0.51	7,826	0.51	
	Inyección de Vapor	15	9,693	0.92	764	1.15	9,693	0.92	764	1.15	
	Inyección de Agua	15	4,284	1.01	146	1.47	4,284	1.01	146	1.47	
Turbinas - Gas Natural	Reducción Catalítica Selectiva y Quemador de Bajo NO _X	15	86,462	0.64	19,917	0.66	33,204	0.73	13,920	0.69	
	Reducción Catalítica Selectiva e Inyección de Vapor	15	90,606	0.67	25,937	0.69	15,279	0.85	5,478	0.84	
	Reducción Catalítica Selectiva e Inyección de Agua	15	121,119	0.59	36,299	0.63	18,027	0.82	7,607	0.78	
Turbinas - Petróleo	Reducción Catalítica Selectiva e Inyección de Agua	15	123,980	0.59	36,100	0.66	70,539	0.61	28,973	0.58	
	Inyección de Agua	15	54,454	0.57	9,688	0.76	54,454	0.57	9,688	0.76	

Fuente: (EPA 2010c)

Nota: Costos en USD (1990)

8.3.3.6 Costos Unitarios – Fuentes Puntuales no IPM (ptnonipm)

Tabla 8-17 Costos Unitarios – Fuentes Puntuales no IPM (ptnonipm)

Tecnología	Vida Útil	Año de Costo	Costo Unitario por Defecto	Razón Capital - Anual	Costo Unitario Incremental
	Años		USD/ton		USD/ton
Ajuste razón aire-combustible	15	1990	975	2.2	
Ajuste razón aire-combustible y retardo de encendido	15	1990	950	1.9	210
Tecnología de inyección de biosólidos	15	1997	310	7.3	
Re-combustión de carbón	20	1990	935	2.0	
Pre-calentamiento de vidrio residual	10	1990	875	4.5	
Impulso Eléctrico	10	1990	5,003	0.0	8,760
Prohibición episódica (Diario)		1990			
Absorción Extendida	10	1990	285	7.4	
Retardo de Encendido	15	1999	770	1.1	
Combustión de baja emisión	10	1993	422	2.3	
Combustión de baja emisión (baja velocidad)	15	1990	1,155		
Combustión de baja emisión (velocidad media)	15	1990	380		
Bajo exceso de aire	10	1990	1,320	3.8	
Quemador de bajo NO _x	10	2003	577	4.5	1,275
Quemador de bajo NO _x (1997 AQMD)	20	1990	595		
Quemador de bajo NO _x y recirculación de gases de salida	15	1990	1,886	6.6	2,904
Quemador de bajo NO_{X} y recirculación de gases de salida + Sobrecombustión	15	2003	823	7.8	
Quemador de bajo NO _x + Sobrecombustión	15	2003	700	3.0	
Quemador de bajo NO _x + Reducción Catalítica Selectiva	15	1999	10,573	6.7	
Quemador de bajo NO _x + Reducción No-Catalítica Selectiva	15	1990	2,410	5.9	3,234
Quemado a mitad de horno	15	1997	55	3.5	

Tecnología	Vida Útil	Año de Costo	Costo Unitario por Defecto	Razón Capital - Anual	Costo Unitario Incremental
	Años		USD/ton		USD/ton
Recombustión de Gas Natural	20	1990	935	2.0	
Reducción Catalítica no-selectiva	15	1999	402	2.5	
Combustión con oxígeno	10	1999	4,277		
Recorte de oxígeno e inyección de agua	10	1990	500	2.9	
RACT a 25 tpy (Quemador de bajo NO _x)	10	1990	1,100		
RACT a 50 tpy (Quemador de bajo NO _x)	10	1990	1,100		
Reducción Catalítica Selectiva y Quemador de Bajo NO _x	15	1990	1,585	4.0	12,920
Prohibición Estacional	0	1990	0		
Reducción Catalítica Selectiva	20	2003	1,618	7.0	
Reducción Catalítica Selectiva e Inyección de Vapor	15	1990	1,425	3.0	6,125
Reducción Catalítica Selectiva e Inyección de Agua	15	1990	1,747	2.5	5,502
Reducción No-Catalítica Selectiva	20	2003	1,424	5.5	
Reducción No-Catalítica Selectiva – Amonio	20	1990	995	3.7	
Reducción No-Catalítica Selectiva - Urea	15	1999	770	1.6	
Inyección de Vapor	15	1990	770	3.3	
Reducción térmica	10	1990	420	2.3	
Quemador Ultra Bajo NO _x	15	1990	1,183	7.3	
Calentador de Agua y calentador de espacios con quemador de bajo NO _x	20	1990	1,230		
Reemplazo de calentador de agua	13	1990	0		
Inyección de Agua	15	2005	44,000	2.8	

Fuente: (EPA 2010c)

NOTA: Se presentan valores promedio, que pueden variar entre los distintos tipos de fuente

8.3.3.7 Parámetros de Entrada - Ecuaciones Tipo 3 – 6

Tabla 8-18 Parámetros estimación de costos – Ecuaciones Tipo 3 - 6 – SO₂

Tipo de Ecuación	Tipo de Fuente	Tecnología	Eficiencia de Control	Vida Útil	Año de Costo
3	Varios	Desulfuración de gases de salida	90	15	1990
3	Industria Metales Primarios	Planta de ácido sulfúrico	70	15	1990
3	Industria Metales Primarios	Planta de ácido sulfúrico	90	15	1990
4	Fundición de Plomo o Zinc - Sinerización	Absorción Dual	99	15	1990
4	Plantas de Ácido Sulfúrico – Absorción de Contacto (Conversión 93%)	Aumento del % de conversión de ro para cumplir con la norma NSPS (99.7)	95	15	1990
4	Plantas de Ácido Sulfúrico – Absorción de Contacto (Conversión 97%)	Aumento del % de conversión de ro para cumplir con la norma NSPS (99.7)	90	15	1990
4	Plantas de Ácido Sulfúrico – Absorción de Contacto (Conversión 98%)	Aumento del % de conversión de ro para cumplir con la norma NSPS (99.7)	85	15	1990
4	Plantas de Ácido Sulfúrico – Absorción de Contacto (Conversión 99%)	Aumento del % de conversión de ro para cumplir con la norma NSPS (99.7)	75	15	1990
5	Plantas de Recuperación de Azufre – Azufre Elemental (Claus: 2 etapas sin control (92-95% remoción))	Depuración de aminos – paso adicional de gas de salida	98	15	1990
5	Plantas de Recuperación de Azufre – Azufre Elemental (Claus: 3 etapas sin control (95-96% remoción))	Depuración de aminos – paso adicional de gas de salida	98	15	1990
5	Plantas de Recuperación de Azufre – Azufre Elemental (Claus: 3 etapas sin control (96-97% remoción))	Depuración de aminos – paso adicional de gas de salida	97	15	1990
6	Producción de sub-productos de Coque (Hornos de Coque)	Desulfuración de Gas de Horno de Coque	90	15	1990

8.3.3.8 Ecuación Tipo 11 – Costos Unitarios

Tabla 8-19 Costos Unitarios – Ecuación Tipo 11 – SO₂

Tipo de Fuente	Tecnología		Vida Útil	Costo Unitario (USD/ton)
Refinería de Petróleo – Unidades de agrietamiento catalítico y térmico	Aditivo de catalizador	43	0	1,493
Fuentes no puntuales residenciales	Adición de químicos a desechos	75	0	2,350
Calderas - Carbón	Lavado de carbón	35	0	320
Calderas	Desulfuración de gases de salida	90	0	2,898
Combustión Fuentes Estacionarias	Cambio de combustible	75	0	2,350
Calderas Combustión Externa	Cambio de combustible	75	0	2,350
Calderas – Alto contenido de azufre	Cambio de combustible – Alto a bajo contenido de S	60	0	140
Calderas	Combustible bajo en S	80	0	2,350
Calefacción Residencial	Combustible bajo en S	75	0	2,350
Hornos de Cemento	Absorbente Seco	90	0	25,000
Calderas	Inyección de sorbente al ducto	40	0	1,069
Plantas de Recuperación de Azufre – Azufre Elemental (Claus: 2 etapas sin control (92-95% remoción))	Recuperación de azufre y/o tratamiento de gases de salida	99.8	15	643
Plantas de Recuperación de Azufre – Azufre Elemental (Claus: 3 etapas sin control (95-96% remoción))	Recuperación de azufre y/o tratamiento de gases de salida	99.8	15	643
Plantas de Recuperación de Azufre – Azufre Elemental (Claus: 3 etapas sin control (96-97% remoción))	Recuperación de azufre y/o tratamiento de gases de salida	99.7	15	643
Hornos de Cemento	Desulfuración Húmeda de Gases de Salida	90	0	7,000
Refinería de Petróleo – Unidades de agrietamiento catalítico y térmico	Desulfuración Húmeda de Gases de Salida	97	0	665
Refinería de Petróleo – Calentadores de Procesos	Desulfuración Húmeda de Gases de Salida	96	0	26,529
Hornos de Cemento	Desulfuración Húmeda de Gases de Salida	90	0	35,000

8.3.3.9 Parámetros de Entrada – Ecuación Tipo 8

Tabla 8-20 Parámetros estimación de costos - Ecuación Tipo 8 - MP

Tecnología		Costo de Capital (CC_F)	Costo de OyM (C_OM_F)	Año de Costo
	años	USD/acfm	USD/acfm	
Precipitador Electrostático Seco	20	27	16	1995
Filtro de tela – agitador mecánico	20	29	11	1998
Filtro de Tela (Pulso a chorro)	20	13	11	1998
Filtro de tela – Tipo limpiado con aire reverso	20	34	13	1998
Depurador de placa de choque	10	7	25	1995
Filtro de papel/no-tejido – Tipo colector de cartucho	20	9	14	1998
Depurador tipo venturi	10	11	42	1995
Precipitador Electrostático Húmedo – Tipo Placa de Alambre	20	40	19	1995

8.3.3.10 Ecuación Tipo 8 – Costo Unitarios

Tabla 8-21 Costos Unitarios – Ecuación Tipo 8 – MP

Tecnología	Costo de Capital Unitario (CPT_C)	Cost de OyM Unitario (CPT_OyM)	Costo Anual Total (CPT_A)	Año de Costo
	USD/ton	USD/ton	USD/ton	
Riego			307	1990
Oxidante Catalítico			2,150	1990
Plan de control de polvo			3,600	1990
Precipitador Electrostático Seco	710	41	110	1995
Diesel Oxidation Catalyst (DPF infeasible)			1,500	2003
Filtro de partículas Diesel			10,500	2003
Precipitador Electrostático			5,050	1999
Filtro de tela – agitador mecánico	412	62	126	1998
Filtro de Tela (Pulso a chorro)	380	28	117	1998
Filtro de tela – Tipo limpiado con aire reverso	0	0	148	1998
Depurador de placa de choque	87	417	431	1995
Sustituir rellenos sanitarios en vez de quema abierta			3,500	1999
Filtro de papel/no-tejido – Tipo colector de cartucho	0	0	142	1998
Aumento de humedad de combustible			2,617	1990
Programa de Educación y Asesoría			1,320	1990
Estufas a Leña que cumplen NSPS			1,454	1990
Depurador tipo venturi	189	713	751	1995
Precipitador Electrostático Húmedo	923	135	220	1995

8.4 GAINS

A continuación se presenta en primer lugar la metodología general utilizada en GAINS, para luego profundizar en las medidas utilizadas, sus eficiencias de reducción y la estimación de costos asociados.

8.4.1 Metodología General

8.4.1.1 Estimación de Emisiones

Para los contaminantes mencionados anteriormente (ver sección 4.3.3), se calculan las emisiones actuales y futuras basadas en el nivel de actividad, factores de emisión sin control (cuando no se aplica la medida de control), la eficiencia de remoción de las medidas de control y la extensión sobre la cual se aplican las medidas. La fórmula usada es la siguiente:

$$E_{p,c} = \sum\nolimits_{t} \sum\nolimits_{m} {{A}_{p,t}} *FE_{p,c,t,m} *X_{p,c,t,m}$$

Ecuación 3. Estimación de Emisiones

Donde,

-p, c, t y m son país, contaminante, tipo de actividad y medida de abatimiento, respectivamente.

 $-E_{p,c}$ es la emisión total de un país (p), y un cierto contaminante (c).

-A_{p,t} es la actividad para un tipo de actividad (t) (por ejemplo, consumo de carbón en plantas de generación eléctrica) en un país específico (p).

-FE_{p,c,t,m} es el factor de emisión para un tipo de actividad (t), de un cierto contaminante (c), en un país específico (p), después de la aplicación de la medida de de control (m).

 $-X_{p,c,t,m}$ es la proporción de la actividad total de un determinado tipo (t), en un cierto país (p), bajo la aplicación de una medida de control (m), de un contaminante (c).

Más adelante, el factor de emisión sin control y la eficiencia de remoción son reemplazadas en la Ecuación 3 por un único valor que representa el factor de emisión después de la aplicación de la medida de control. Este enfoque permite considerar diferencias críticas entre sectores económicos y países, lo que significaría tener requerimientos de reducción de emisiones diferenciados en una estrategia costo-eficiencia. GAINS estima las emisiones en el futuro con la Ecuación 3 variando los niveles de actividad ajustados a proyecciones en la actividad humana, y ajustando la tasa de implementación de medidas de control. Asimismo, utiliza bases de datos para todos los

países europeos, los cuales emplean estadísticas internacionales de energía y agricultura y factores de emisión apropiados.

8.4.1.2 Medidas de control y estimación de costos

Las medidas de control corresponden a aparatos, técnicas o prácticas que reducen la emisión de a lo menos un determinado contaminante para un grupo de fuentes de emisión. La clasificación de las medidas se puede hacer en 3 importantes grupos:

- "Cambios de comportamiento" en la actividad humana que generan contaminación. Estos pueden ser cambios que aparecen de forma autónoma en las personas (por ejemplo, cambios en el estilo de vida), se pueden promover mediante controles (por ejemplo, con restricción vehicular) o se pueden impulsar mediante incentivos económicos (por ejemplo, con impuestos a la contaminación). El modelo GAINS no internaliza en esos comportamientos, pero los considera en diferentes escenarios al modificar la actividad humana.
- "Medidas Estructurales" que suministran al usuario el mismo servicio (por ejemplo, cantidad de energía) pero con actividades menos contaminantes. Este grupo incluye sustitución de combustible (por ejemplo, de carbón a gas natural) y mejoras en la eficiencia energética. Estas medidas no afectan la proyección de las fuerzas impulsoras de la actividad humana, pero implican cambios estructurales con complejas interacciones dentro de economías nacionales.
- ✓ Una gran variedad de "Medidas Tecnológicas" que capturan las emisiones antes de que estas salgan expuestas desde sus fuentes a la atmósfera. El modelo GAINS utiliza aproximadamente 3.500 medidas específicas para la reducción de los contaminantes SO₂, NOҳ, COV, NH₃, CH₄, MP, N₂O y gases Fluorados (F).

La distribución óptima de las medidas de control entre los distintos países y sectores depende en gran cantidad de la diferencia entre los costos asociados a las medidas. Por lo tanto, es de suma importancia entender cuáles son los factores que afectan los costos de control entre países, sectores económicos y contaminantes.

Para el cálculo de los costos se consideran los avances tecnológicos de cada país. Para cada sector económico y país existen diferencias en los costos para las medidas de control. Para las 3.500 opciones de medidas aplicables, GAINS estima los costos considerando la inversión anualizada (I), los costos de operación variables (CV) y los costos fijos (CF), que a la vez están en función de la tecnología (m), el país (p) y el tipo de actividad (t). El costo unitario de abatimiento (CA) relacionado con una actividad (A), se estima de la siguiente manera:

$$CA_{m,p,t} = \frac{I_{m,p,t} + CF_{m,p,t}}{A_{p,t}} + CV_{m,p,t}$$

Ecuación 4. Costo unitario de abatimiento

Para hacer un análisis de sensibilidad de costo-efectividad se incluye la cantidad de emisiones reducidas. El costo por unidad reducido (CR) de un cierto contaminante (c) está dado por:

$$CR_{m,p,t,c} = \frac{CA_{m,p,t}}{E_{0,p,t,c} - E_{m,p,t,c}}$$

Ecuación 5. Costo por unidad reducida

Donde, $E_{0,p,t,c}$ son las emisiones cuando no hay una medida de control aplicada (caso base) y $E_{m,p,t,c}$ son las emisiones cuando se aplica una medida (caso con proyecto).

Además, el modelo GAINS produce una curva de costos para los controles de emisiones, que realiza un ranking para cada país de las medidas de control disponibles según su costo marginal.

8.4.1.3 Determinación de estrategias de control

Una estrategia de control corresponde a un conjunto de medidas de control aplicadas a un grupo de fuentes de emisiones en una determinada región para reducir los contaminantes emitidos a la atmósfera. De este modo se mejora la calidad del aire y al mismo tiempo la salud de las personas y los ecosistemas.

Antes de ejecutar el modelo los tomadores de decisiones deben definir cuáles serán los parámetros a usar, o dicho de otra forma hay que establecer en qué partes de Europa se quiere mejorar la calidad del aire y en qué cantidad. Para una mejor toma de decisiones en base a los resultados de aplicación de las medidas de control GAINS entrega la posibilidad de escoger entre 4 tipos de estrategias de control dependiendo del lugar donde se quieran aplicar. Estas están relacionadas con los objetivos y metas que el usuario busque. Las opciones son:

✓ Establecer las metas de calidad ambiental en toda Europa. De este modo, todos los habitantes y ecosistemas de Europa tendrán las mismas condiciones de calidad del aire. No obstante, esto implica que existirán regiones muy contaminadas que tendrán que invertir gran cantidad de dinero en reducir sus emisiones, mientras no habrá incentivos en áreas menos contaminadas.

- Establecer las mismas metas de mejora ambiental para todos los países, pero en términos relativos en comparación a un año base para cada caso. Tal enfoque resultaría en una mejor distribución de esfuerzos para los países. El inconveniente de este enfoque son los grandes gastos en que tendrán que incurrir los países que tienen bajo potencial en mejorar la calidad del aire con medidas adicionales.
- Apuntar a que todos los países logren una meta en base al mismo progreso relativo, dentro la factibilidad de cada país. En otras palabras, se hace una comparación entre el caso base y el caso de reducción máxima de emisiones. Este enfoque busca entregar una mejor distribución de costos para cada país según su posibilidad, aunque el problema que tiene es la sensibilidad de los resultados cuando se definen erróneamente los casos de año base y reducción máxima de emisiones.
- Como una variante del punto anterior, la última opción consiste en optimizar las mejoras ambientales totales en toda Europa sin importar el lugar. Este enfoque entrega un resultado basado en el costo-efectividad de las medidas más que en la adopción de determinadas metas. La desventaja de esta opción son los esfuerzos adicionales que tendrán que hacer los países con medidas de control menos rigurosas.

8.4.1.4 Dispersión atmosférica

Para un análisis integral de contaminación atmosférica se necesita hacer una conexión entre las variaciones marginales de contaminantes precursores de diferentes fuentes y las respuestas en los indicadores de calidad del aire. GAINS se apoya del *Unified EMEP Eulerian Model*, que describe el destino de las emisiones en la atmósfera considerando más de 100 reacciones e involucrando 70 especies químicas. Sin embargo, el análisis en conjunto del aspecto económico y ecológico requiere modelos computacionales que expliquen las relaciones entre fuentes y receptores. Para este caso se hicieron simplificaciones matemáticas simples de tales modelos. Con las modificaciones hechas es posible describir cambios en la concentración anual de MP_{2,5}, deposición de compuestos de sulfuro y nitrógeno, como también calcular los niveles de ozono a nivel del suelo.

Las relaciones entre fuentes y receptores se han desarrollado para los cambios en las emisiones de SO_2 , NO_X , COV, NH_3 , $MP_{2,5}$ para 43 países y 4 áreas marinas, describiendo sus impactos en celdas de resolución de $50 \, \text{km}$ x $50 \, \text{km}$. En las secciones siguientes se describen estas relaciones.

8.4.1.4.1 Material Particulado Fino (MP2,5)

El análisis de efectos en la salud hecho por GAINS depende de estudios epidemiológicos que asocien la mortalidad prematura de las personas con las concentraciones medias anuales de MP_{2,5} monitoreadas en estaciones de control. De ese modo, las relaciones entre fuentes y receptores describen, solo para un

rango determinado de emisiones, los niveles de concentraciones anuales de $MP_{2,5}$ que están sujetas a cambios en las emisiones de contaminantes precursores. Los contaminantes precursores son SO_2 , NO_X , NH_3 , y emisiones primarias de $MP_{2,5}$. GAINS utiliza una fórmula lineal para calcular la cantidad media de $MP_{2,5}$ que se produce anualmente debido a cambios en las emisiones anuales de los contaminantes nombrados anteriormente.

El aumento de concentración de MP2,5 está relacionado con un aumento de efectos sobre la salud de las personas. Pero las personas no se encuentran en todo el territorio europeo, sino que se ubican en grandes urbes donde se concentra la mayor cantidad personas. Y al usar celdas de 50km x 50km para modelar las variaciones de contaminantes, se subestiman estos efectos. Por esta razón, GAINS se apoya de un modelo llamado *City-Delta* que escala la concentración media anual de las grandes urbes de MP_{2,5} con las concentraciones medias de la celda de 50km x 50km donde se ubica la ciudad.

Considerando efectos de difusión atmosféricos, el diámetro de la ciudad y la velocidad del viento es posible calcular el aumento de concentraciones de MP_{2,5} en una ciudad:

$$\Delta PM_{urbano} = \frac{Q}{A} * \sqrt{\frac{D}{U}} * (\alpha * \frac{365 - d}{365} + \beta * \frac{d}{365})$$

Ecuación 6. Diferencia de concentración de MP2,5

Donde,

 $-\Delta MP_{urbano}$ es la diferencia de concentración de $MP_{2,5}$ entre un área urbana y la concentración media de $MP_{2,5}$ de la celda 50km x 50km.

-Q/A es la densidad de emisiones primarias de $MP_{2,5}$ de fuentes de baja altura que dentro de la ciudad.

-D es el diámetro de la ciudad³⁴

-U es la velocidad media del viento en la ciudad³⁵

-d es el número de días con baja velocidad del viento (menor a 1m/s)

 $\mbox{-}\alpha$ y β son coeficientes de regresión basados en los resultados del modelo City-Delta

³⁵ La velocidad del viento se obtiene de la base de datos de http://www.marsop.info/marsop3/

³⁴ Diámetros de las ciudades se obtienen de la base de datos de www.citypopulation.de

Gestión y Política Ambiental DICTUC S.A.

Cuando no hay información disponible de los inventarios de emisiones específicos de las ciudades en Europa, se usan emisiones de las urbes estimadas del inventario de emisiones compilado por el modelo EMEP³⁶.

El modelo *city-delta* realiza el análisis originalmente para 7 ciudades: Berlín, Cracovia, Lisboa, Londres, Milán, París y Praga. En base al análisis realizado a estas ciudades es que se estimó un 2 y 2 de 0,22 y 0,48 respectivamente para aplicar el análisis a 473 ciudades de Europa. (Amann, Cofala et al. 2007)

8.4.1.4.2 Composición de compuestos de azufre y nitrógeno

Para cuantificar el riesgo de acidificación y eutrofización de ecosistemas, GAINS utiliza el concepto de "Cargas Críticas". Las cargas críticas se definen como la estimación cuantitativa de la exposición a uno o más contaminantes por debajo de la cual los efectos dañinos importantes no ocurren en elementos sensibles del medioambiente según el conocimiento actual. De este modo, los indicadores de impacto de calidad del aire comparan la media anual de compuestos acidificantes depositados con las cargas críticas. El modelo Euleriano EMEP sugiere una relación lineal, para un determinado rango de emisiones, entre la deposición de la media anual de compuestos de azufre y nitrógeno, y las emisiones de SO₂, NO_x y NH₃:

$$De_{c,r} = De_{c,r,0} - \sum_{p} P_{p,c,r,0} * (E_{p,c,0} - E_{p,c})$$

Ecuación 7. Deposición anual de contaminantes

Donde,

- -De_{c,r} es la deposición anual de un contaminante(c) en un punto receptor.
- -De $_{c,r,0}$ es la deposición de referencia de un contaminante (c) en un punto receptor (r).
- $-E_{p,c}$ es la emisión anual de un contaminante (c) (SO₂, NO_X, NH₃) en un país (p).
- $-E_{p,c,0}$ es la emisión de referencia de un contaminante (c) en un país (p).
- -P_{p,c,r,0} es una matriz de transferencia para el contaminante (c) por cambios en las emisiones alrededor del punto de referencia.

8.4.1.4.3 Formación de ozono a nivel del suelo

Nuevas evidencias científicas han demostrado que la relación que existe entre un aumento de concentración del ozono con efectos en la salud de las personas, no es solo por los momentos *peaks* de concentración, sino también por bajas

³⁶ La base de datos de las emisiones puede encontrar en: http://www.ceip.at/webdab-emission-database/

concentraciones de ozono durante todo el año. Para el análisis de efectos en la salud se usa un indicador especial de ozono, el cual GAINS es capaz de calcular con información de las emisiones de NO_x y COV.

8.4.1.5 Impactos en la calidad del aire

Entre los impactos que existen, se pueden nombrar los siguientes:

- ✓ Impactos en la salud por MP: GAINS cuantifica para diferentes escenarios de emisiones la mortalidad prematura que se produce por exposiciones a largo plazo de MP_{2,5}, usando los resultados del estudio de la Sociedad Americana Del Cáncer según grupos de edad. Se calculan valores de la expectativa de vida y cantidad de años perdidos para la población.
- ✓ Impactos en la salud por el ozono: GAINS calcula la mortalidad prematura que se produce, usando un indicador de la concentración de ozono durante el año (SOMO35) en exposiciones a largo plazo. Además de la mortalidad existen claros efectos sobre la morbilidad de la población, sin embargo estos no son cuantificados por el modelo debido a que no es un factor tan relevante a la hora de estimar los beneficios.
- ✓ Protección de ecosistemas contra deposición y eutrofización: para este caso GAINS utiliza el concepto de cargas críticas (ver sección 8.4.1.4.2) como indicador de la cantidad de deposición de compuestos de azufre y nitrógeno. Para evaluar los impactos en los ecosistemas también se debe calcular la excedencia acumulada promedio de las cargas críticas de todos los ecosistemas.
- ✓ Impactos en la vegetación por ozono a nivel del suelo: elevadas concentraciones de ozono han demostrado tener varios efectos en la vegetación.
- ✓ Impactos en el clima: para evaluar el impacto de los gases de efecto invernadero sobre el cambio climático de los países se utiliza el concepto de forzante radiativo. Este indicador se refiere al cambio de radiación entrante o saliente de un sistema.

8.4.1.6 Análisis Costo Beneficio (ACB)

Una evaluación monetaria de los beneficios de las estrategias de control es una herramienta sumamente importante para la toma de decisiones de ambiciones ambientales e implicancias económicas. El gran problema está en la valorización de bienes que no están en el mercado, como por ejemplo la vida de los seres humanos. Por este motivo se ha decidido restringir este tipo de valorización y solo se hacen cálculos para objetos cuyo valor tienen consenso general.

8.4.1.7 Análisis Costo-efectividad

Como una de las características más importantes de GAINS, se encuentra el modelo de optimización que logra encontrar la mejor combinación de medidas de control, asociadas a fuentes de emisión, para llegar al menor costo posible de una estrategia de control. Todo lo anterior también considera los costos respectivos de los distintos países y modelos de dispersión atmosféricos.

GAINS calcula solamente medidas de control "afuera de la chimenea" que no cambian el nivel de actividad (por ejemplo, consumo de energía), y medidas estructurales (por ejemplo, conservación de la energía) que no cambian la cantidad de emisiones.

Para calcular los costos unitarios de abatimiento y las eficiencias de remoción es necesario considerar el progreso tecnológico. En otras palabras, se requiere que en las bases de datos se tenga el valor futuro de las medidas de control y, a la vez, se necesita considerar el efecto del desarrollo tecnológico para tal valor.

Existen varias constantes que deben ser especificadas por el usuario que permiten definir el alcance y objetivo de la estrategia de control. Se usan constantes de variables para el aire (por ejemplo, impacto a la salud por MP y ozono), la proporción de alcance de las medidas a las fuentes y expresiones de balances de masas.

Por último, hay que destacar la posibilidad de definir el grado de receptores. Esto se refiere a si se quiere que el receptor sea una celda unitaria 50km x 50km, un país entero de Europa, o incluso que sea toda Europa.

8.4.1.8 Incertidumbre

Existe mucha incertidumbre dentro del modelo. Por ejemplo, en los inventarios de emisión, en los modelos de dispersión atmosférica o en el análisis de impacto a la salud.

Según estudios y talleres que se hicieron entre los desarrolladores del modelo y los "tomadores de decisiones" se concluyó que a los legisladores no les importan tanto los resultados estadísticos detallados y prefieren estrategias robustas. En otras palabras, prefieren estrategias que no cambien significativamente con los elementos de incertidumbre. Siguiendo este argumento, GAINS fue desarrollado de modo que con alta probabilidad las reducciones de emisiones resultantes pueden ser consideradas como requerimientos mínimos, lo que significa que existen pocas posibilidades de que las medidas de control sugeridas por el modelo necesiten ser cambiadas en el futuro en base a nueva información.

GreenLabUC

Gestión y Política Ambiental DICTUC S.A.

Por el mismo motivo el modelo tiene ciertos sesgos. Por ejemplo, los costos de control están sobrestimados para que medidas menos costosas no sean incorporadas y no se provoquen grandes cambios estructurales. La resolución espacial (50km x 50km) del modelo no permite considerar efectos a pequeña escala, por lo que los daños a los ecosistemas son subestimados. También se limitaron otros análisis como los de ozono a nivel del suelo, impactos a la salud por ozono, morbilidad, entre otros. Estas adaptaciones tienen que ser considerados a la hora de tomar decisiones.

8.4.2 Medidas, Eficiencia y Costos

A continuación se presenta información del modelo GAINS potencialmente aplicable para un modelo en Chile, entre ellas: los sectores y tipos de fuentes considerados, las medidas utilizadas para reducción de contaminación (solo MP, SO₂ y NO_X), además de las eficiencias de reducción y sus costos asociados.

8.4.2.1 Sectores y fuentes consideradas

El modelo distingue entre cuatro sectores de fuentes de emisión, los que se detallan en la tabla a continuación:

Tabla 8-22 Sectores incluidos en el modelo GAINS

Sector	Sub-sector	Categoría
Fuentes Estacionarias con Combustión de Energía	Generación Eléctrica	 Nuevas plantas de generación Calderas existentes de fondo húmedo Calderas existentes de fondo seco
	Combustión Industrial	Calderas industrialesOtras fuentes de combustión industrial
	Combustión Doméstica	 Chimeneas Estufas Caldera simple (< 50 kW) Caldera mediana (< 1 MW)
	Conversión de combustibles	 Procesos de conversión de combustibles
Procesos Industriales	Industria del Hierro y Acero	 Producción de Coque Producción de Hierro Producción de Hierro (emisiones fugitivas) Plantas de Pelletizado Plantas de Sinterización Plantas de Sinterización (emisiones fugitivas) Horno de Solera Horno de oxígeno básico Horno de arco eléctrico Fundición de Hierro y Acero Fundición de Hierro y Acero (emisiones fugitivas
	Industria de metales no-ferrosos	 Aluminio primario Aluminio secundario Otros metales no-ferrosos (plomo, níquel, zinc y cobre)
	Otros procesos industriales	 Producción de briquetas de carbón Producción de cemento Producción de cal Producción de vidrio

Sector	Sub-sector	Categoría
		 Refinamiento de petróleo Producción de carbón negro Producción de fertilizantes Otros procesos de producción (fibra de vidrio, PVC, yeso, otros) Pequeñas plantas industriales, emisiones fugitivas
	Minería	 Minería de carbón (café) Minería de carbón duro Otros (bauxita, cobre, mineral de hierro, etc.)
	Ganadería	AvesCerdosVacas lecherasOtras vacas
	Otros	 Arado, Labranza, cosecha Otros
	Desechos	 Quema en industria de gas y petróleo Quema abierta de desecho agrícola Quema abierta de desecho residencial
	Almacenaje y manejo de materiales a granel	 Carbón Mineral de Hierro Fertilizantes N, P y K Otros productos industriales (cemento, coque, etc.) Productos agrícolas (cultivos)
Fuentes Móviles	Transporte en carretera (On-Road)	 Vehículos pesados (camiones, buses y otros) Motocicletas, cuatro tiempos Motocicletas, dos tiempos Vehículos livianos y vans, cuatro tiempos Vehículos livianos, cuatro tiempos, inyección directa de gasolina
	Transporte fuera de carretera (Off- Road)	 Motores de dos tiempos Maquinaria de construcción Maquinaria agrícola Trenes Vías navegables interiores Tráfico aéreo (LTO) Otros, cuatro tiempos (militar, residencial, etc.)
	Actividades marítimas, embarcaciones	Embarcaciones medianasEmbarcaciones grandes
Otras Fuentes	Otras	 Actividades de construcción Fritura de carne, preparación de comida, Asados

Gestión y Política Ambiental DICTUC S.A.

Sector	Sub-sector	Categoría		
			Cigarros Fuegos artificiales	
		•	_	
		•	Otros	

Fuente: (Klimont, Cofala et al. 2002)

Para el caso de las fuentes móviles, el modelo considera además emisiones de material particulado por desgaste de neumáticos, desgaste de frenos y abrasión de calles pavimentadas.

8.4.2.2 Eficiencia de Reducción

Las opciones de control consideradas para el sector industrial y de generación eléctrica, y sus eficiencias de remoción son:

Tabla 8-23 Eficiencia de abatimiento - sector industrial y de generación eléctrica

Tabla 8-23 Eficiencia de abatimiento - sector industrial y de generación eléctrica							
Sector	Tecnología de Control	> MP10	MP10-2,5	MP2,5	NO _x	SO ₂	
Industria /	Ciclones	90%	70%	30%			
	Depurador húmedo	99.9%	99%	96%			
	Precipitador electrostático, 1 campo	97%	95%	93%			
	Precipitador electrostático, 2 campos	99.9%	99%	96%			
	Precipitador electrostático, 3 campos y más	99.95%	99.9%	99%			
	Precipitador electrostático húmedo	99.95%	99.9%	99%			
	Filtro de tela	99.98%	99.9%	99%			
Generación Eléctrica Precipitador electrostático, 1 campo 99.9% 99% 96% Precipitador electrostático, 2 campos 99.9% 99.9% 99% 96% Precipitador electrostático, 2 campos 99.9% 99.9% 99% 96% Precipitador electrostático, 3 campos y más 99.95% 99.9% 99% Precipitador electrostático húmedo 30% 30% 30% 30% 30% 30% 30% 30% 30% 30%							
					65%		
Calderas y Hornos Industriales					50%		
					65%		
					80%		
	•				80%		
•	Modificación de Combustión				50%		
Hornos	· ·				80%		
	Depurador húmedo 99.9% 99% 96% Precipitador electrostático, 1 campo 97% 95% 93% Precipitador electrostático, 2 campos 99.9% 99.9% 99% 96% Precipitador electrostático, 3 campos y más 99.95% 99.9% 99% Precipitador electrostático húmedo 99.95% 99.9% 99% Precipitador electrostático húmedo 99.95% 99.9% 99% Precipitador electrostático húmedo 99.95% 99.9% 99.9% 99.9% Mantención regular, calderas a petróleo 30% 30% 30% 30% Modificación de Combustión / Carbón Café / plantas existentes Modificación de Combustión / Carbón Duro / plantas existentes Modificación de Combustión / Petróleo y Gas / plantas existentes Reducción Catalítica Selectiva (SCR) – plantas nuevas Modificación de Combustión y Reducción Catalítica Selectiva – plantas existentes Modificación de Combustión y Reducción Catalítica Selectiva – plantas existentes Catalitica Selectiva – plantas existentes Modificación de Combustión y Reducción Catalítica Selectiva – plantas existentes Catalitica Selectiva – plantas existentes Modificación de Combustión y Reducción Catalítica Selectiva – plantas existentes Catalitica Selectiva – plantas existentes Modificación de Combustión y Reducción Catalitica Selectiva – plantas existentes Modificación de Combustión y Reducción Catalitica Selectiva – plantas existentes Catalitica Selectiva – plantas existentes Modificación de Combustión y Reducción Catalitica Selectiva – plantas existentes Modificación de Combustión y Reducción No-Catalitica Selectiva – plantas existentes — plantas existente	70%					
	Control Etapa 1				40%	50%	
Industriales	Control Etapa 2				60%	70%	
	Control Etapa 3				80%	80%	
	Buenas Prácticas – Emisiones Fugitivas – Etapa 1	20%	15%	10%			
	Buenas Prácticas – Emisiones Fugitivas – Etapa 2	75%	50%	30%			
	Combustibles con menor contenido de azufre					(*)	
Generación	Inyección de piedra caliza					50	
Industria	Desulfuración de gases de combustión húmeda					85%	
						90%	
	Desulfuración de gases de combustión húmeda					95%	
Eléctrica /						98%	

Fuente: (Cofala & Syri 1998a, Cofala & Syri 1998b, Klimont, Cofala et al. 2002)

(*) La eficiencia de remoción depende del contenido de azufre del combustible reemplazado

Las opciones de control consideradas para el sector residencial y comercial, y sus eficiencias de remoción son:

Tabla 8-24 Eficiencia de abatimiento – sector residencial y comercial

Tecnología de Control	> MP10	MP10-2,5	MP2,5	NO _x	SO ₂
Chimeneas, inserto no-catalítico	44%	44%	44%		
Chimeneas, inserto catalítico	47%	47%	47%		
Chimenea nueva	70%	70%	70%		
Estufa residencial mejorada (carbón), etapa 1	30%	30%	30%		
Estufa residencial nueva (carbón), etapa 2	50%	50%	50%		
Estufa residencial mejorada (leña), no-catalítica	63%	63%	63%		
Estufa residencial nueva (leña), catalítica	80%	80%	80%		
Estufa residencial nueva (pellets)	95%	95%	95%		
Estufa residencial nueva (leña, precipitador electrostático)	96%	96%	96%		
Estufa residencial nueva (pellets y precipitador electrostático)	99.3%	99.3%	99.3%		
Caldera residencial mejorada (leña)	60%	60%	60%		
Caldera residencial nueva (carbón)	40%	40%	40%		
Caldera residencial nueva (leña)	79.3%	79.3%	79.3%		
Caldera residencial nueva (chips de madera, pellets)	89%	89%	89%		
Caldera residencial nueva (chips de madera, pellets) y Precipitador electrostático	99%	99%	99%		
Mantención regular, calderas a petróleo	30%	30%	30%		
Ciclones	90%	70%	30%		
Filtro de tela	99.98%	99.9%	99%		
Modificación de Combustión – Petróleos Pesados – Comercial				50%	
Modificación de Combustión – Destilados medianos y livianos– Comercial				12%	
Modificación de Combustión – Gas – Comercial				22%	
Modificación de Combustión – Destilados medianos y livianos– Comercial y Residencial				30%	
Modificación de Combustión – Gas – Comercial y Residencial				50%	
Todos los Sectores - Combustibles con menor contenido de azufre – Uso de combustibles con menor contenido de azufre					(*)

Fuente: (Cofala & Syri 1998a, Cofala & Syri 1998b, Klimont, Cofala et al. 2002)

(*) La eficiencia de remoción depende del contenido de azufre del combustible reemplazado

Las opciones de control consideradas para fuentes sin combustión, y sus eficiencias de abatimiento, son:

Tabla 8-25 Eficiencia de abatimiento – fuentes con emisión no asociada a la combustión

Tecnología de Control	> MP10	MP10-2,5	MP2,5	NO _x	SO ₂
Agricultura					
Modificación de alimentación (todo ganado)	45%	35%	10%		
Silo de heno para bovinos	70%	40%	10%		
Aves en corrales al aire libre	40%	15%	5%		
Agricultura de labranza baja, cosecha alternativa de cereales	40%	15%	5%		
Buenas prácticas (otros animales) [opción genérica]	40%	15%	5%		
Otras fuentes					
Buenas prácticas, almacenaje y manejo	50%	20%	10%		
Buenas prácticas en industrial del petróleo y gas, quema de gas	40%	15%	5%		
Prohibición de quema abierta de desechos	100%	100%	100%		
Buenas prácticas en industria de la minería	55%	47%	25%		
Pulverización de agua en sitios de construcción	50%	20%	10%		
Filtros en viviendas (cocinas)	50%	20%	10%		
Genérico (ej. lavado de calles)	n.d.	n.d.	n.d.		
Todos los Sectores					
Combustibles con menor contenido de azufre – Uso de combustibles con menor contenido de azufre					(*)

Fuente: (Cofala & Syri 1998a, Cofala & Syri 1998b, Klimont, Cofala et al. 2002)

(*) La eficiencia de remoción depende del contenido de azufre del combustible reemplazado

n.d. = no definido todavía

Finalmente, las emisiones de las fuentes móviles tienen dos orígenes diferentes: emisiones del tubo de escape debido a combustión y otras emisiones, como por ejemplo desgaste de neumáticos, frenos, etc. Las medidas de control para este sector se dividen en las siguientes categorías:

- Cambio de la calidad de combustible (ej. Reducción contenido de azufre)
- Cambio en el diseño del motor (mejo control de la combustión)
- Tratamiento post-combustión de gases (ej. Catalizador)
- Mejor inyección y mantención

A continuación (Tabla 8-26, Tabla 8-27 y Tabla 8-28) se presentan las medidas para las fuentes móviles para reducción de material particulado:

Tabla 8-26 Eficiencia de abatimiento (%) – transporte de carretera - Diesel

Tipo de vehículo	Tecnología	MP	NO _x
	Euro I	61.0	13.6
	Euro II	69.3	14.0
	Euro III	76.3	31.0
Vehículos Livianos	Euro IV	83.0	21.6
	Euro V	99.0	30.6
	Euro VI	99.0	81.6
	Euro VII	99.6	88.5
	Euro I	29.2	23.2
	Euro II	61.0	17.4
	Euro III	67.9	31.7
Vehículos Pesados	Euro IV	93.3	57.4
	Euro V	93.2	70.5
	Euro VI	99.6	95.6
	Euro VII	99.7	96.8

NOTA: valores actualizados en el modelo GAINS

Tabla 8-27 Eficiencia de abatimiento (%) – transporte Off-Road- Diesel

Tipo de vehículo	Tecnología	MP	NO _x
	Euro I	43.4	34.0
	Euro II	74.5	50.0
Vehículos de	Euro III	74.5	70.0
construcción y agricultura	Euro IV	94.0	74.0
-G	Euro V	94.0	94.0
	Euro VI	97.8	97.0
	Euro I	33.3	34.0
	Euro II	50.0	40.0
Trenes y vías	Euro III	85.0	55.0
navegables interiores	Euro IV	97.0	70.0
interiores	Euro V	94.0	81.0
	Euro VI	97.8	95.5
	Modificación de combustible, embarcaciones medianas	0.0	50.0
Actividades	Modificación de combustión, embarcaciones grandes – fuel oil	0.0	50.0
marítimas: Barcos	Modificación de combustión, embarcaciones grandes - diesel	0.0	50.0
	Reducción catalítica selectiva, embarcaciones grandes – fuel oil	100.0	90.0

Fuente: (Klimont, Cofala et al. 2002)

NOTA: valores actualizados en el modelo GAINS

Tabla 8-28 Eficiencia de abatimiento (%) – motores con encendido a chispa

Tipo de vehículo	Tecnología	MP	NO _x
	Euro I	20.3	75.4
	Euro II	20.0	88.6
Vohículas livianas invasción directo	Euro III	50.7	93.5
Vehículos livianos - inyección directa	Euro IV	50.3	91.5
	Euro V	49.0	97.3
	Euro VI	48.7	97.8
	Euro I	20.3	75.4
	Euro II	20.0	88.6
Vehículos livianos - motor de cuatro tiempos, sin inyección	Euro III	50.7	93.5
directa	Euro IV	50.3	91.5
	Euro V	49.0	97.3
	Euro VI	48.7	97.8
	Etapa 1	28.9	6.9
Motocicletas, motor de 2 tiempos	Etapa 2	38.2	73.8
	Etapa 3	45.7	45.2
	Etapa 1	4.9	26.7
Motocicletas, motor de 4 tiempos	Etapa 2	24.8	9.6
	Etapa 3	27.7	48.3
	Etapa 1	44.7	171.5
Vehículos pesados, motores de encendido por chispa	Etapa 2	76.0	169.7
	Etapa 3	76.4	136.6

NOTA: valores actualizados en el modelo GAINS

Además se considera, al igual que para los otros sectores, el cambio a combustibles con menor contenido de azufre, en cuyo caso la reducción estaría directamente relacionada con el combustible seleccionado. En la tabla a continuación se presentan las eficiencias de abatimiento utilizadas según contenido de azufre del combustible:

Tabla 8-29 Eficiencia de abatimiento (%) cambio a combustibles bajo en azufre

Medida	SO ₂
Antracita a Carbón de bajo azufre (0.6 %S)	46.2
Diesel a Diesel con bajo contenido de azufre - Etapa 1 (0.2 % S)	14.4
Diesel a Diesel con bajo contenido de azufre - Etapa 2 (0.045 % S)	47.3
Diesel a Diesel con bajo contenido de azufre - Etapa 3 (0.001 % S)	88.5
Fuel-oil pesado a Fuel-oil con bajo contenido de azufre (0.6 %S)	78.7
Gasolina a Gasolina con bajo contenido de azufre (0.001 %S)	90.9

Fuente: (Klimont, Cofala et al. 2002)

NOTA: valores actualizados en el modelo GAINS

8.4.2.3 Costos de implementación

La intención del módulo de costos es identificar el valor social de implementar ciertas medidas o estrategias de control. Son valores aproximados, estimados en base a los costos de producción, asumiendo la existencia de un sistema de mercado libre a través de toda Europa lo que entrega valores de inversión iguales entre los distintos países.

La rutina de cálculo de costos también considera características específicas a nivel país, como lo son: tamaño promedio de calderas, tasas de motorización, factores de emisión, etc. Los costos están desagregados en: inversión, costos de operación fijos y costos de operación variables, valores que en conjunto con la eficiencia de remoción son comunes a todos los países. En base a estas tres componentes de costo, el modelo estima un costo anual por unidad de actividad para cada medida.

8.4.2.3.1 Fuentes estacionarias con combustión

Los costos para medidas del sector de fuentes estacionarias con combustión, que son función de la capacidad de las plantas, se presentan a continuación:

La estimación del costo de implementar una medida de reducción, se realiza mediante la aplicación de parámetros para cada medida. Estos parámetros se presentan en las Tabla 8-30 y Tabla 8-31 para el caso de MP, la Tabla 8-32 para el caso de SO_2 y la Tabla 8-33 para el caso de SO_2 y la Tabla 8-33 para el caso de SO_2 y la Tabla 8-33 para el caso de SO_2 y la Tabla 8-33 para el caso de SO_2 y la Tabla 8-33 para el caso de SO_2 y la Tabla 8-33 para el caso de SO_2 y la Tabla 8-33 para el caso de SO_2 y la Tabla 8-33 para el caso de SO_2 y la Tabla 8-33 para el caso de SO_2 y la Tabla 8-33 para el caso de SO_2 y la Tabla 8-33 para el caso de SO_2 y la Tabla 8-33 para el caso de SO_2 y la Tabla 8-33 para el caso de SO_2 y la Tabla 8-33 para el caso de SO_2 y la Tabla 8-33 para el caso de SO_2 y la Tabla 8-33 para el caso de SO_2 y la Tabla 8-33 para el caso de SO_2 y la Tabla 8-33 para el caso de SO_2 y la Tabla 8-33 para el caso de SO_2 y la Tabla 8-34 para el caso de SO_2 y la Tabla 8-35 para el caso de SO_2 y la Tabla 8-35 para el caso de SO_2 y la Tabla 8-36 para el caso de SO_2 y la Tabla 8-36 para el caso de SO_2 y la Tabla 8-37 para el caso de SO_2 y la Tabla 8-38 para el caso de SO_2 y la Tabla 8-39 para el caso de SO_2 y l

Las ecuaciones utilizadas para estimar los costos fijos se presentan a continuación.

Para la inversión, se consideran los coeficientes constantes y variables presentados en las tablas de parámetros, además del factor de *retrofit*, y datos asociados a la instalación del catalizador (en caso que sea necesario):

Gestión y Política Ambiental DICTUC S.A.

$$Inv\left(\frac{Euro}{kW}\right) = (inv_c + \frac{inv_v}{cap}) \times VRGC \times (1+r)$$

Donde,

- inv_c, inv_v: coeficiente constante y variable de la inversión presentados en la tabla anterior
- cap: tamaño (capacidad) de la caldera
- VRGC: Volumen relativo de gases de combustión
- r: factor de retrofit

La inversión, se anualiza al multiplicar por el factor de recuperación de capital:

$$Inv_a\left(\frac{Euro}{kW-a\tilde{n}o}\right) = Inv \times \frac{i \times (1+i)^{vu}}{(1+i)^{vu}-1}$$

Donde,

- i: tasa de interés
- vu: vida útil de la medida o tecnología a aplicar

Los costos fijos de operación y mantención se estiman como función de la inversión anualizada:

C OyM
$$F = Inv \ a \times f \ om$$

Donde,

 f_om: porcentaje de la inversión que representa los costos fijos de operación y mantención.

Los costos fijos totales estarían dados por la suma de la inversión anualizada y el costo fijo de operación y mantención:

$$CF\left(\frac{Euro}{kW - a\tilde{n}o}\right) = Inv_a + CF_OyM$$

Los costos variables, corresponden a aquellos por mano de obra, demanda adicional de electricidad, consumo de materiales sorbentes, costo por disposición de residuos, e instalación de catalizador, siempre que corresponda. Por ejemplo en las medidas de reducción de MP y NO_X no es necesario considerar compra de material sorbente.

El costo de mano de obra, se estima como:

$$CV_OyM_MO_{PJ} = \frac{labor}{fp}$$

Donde,

- labor: es la demanda de mano de obra por unidad de energía
- fp: factor de planta (horas de operación por año)

Para el caso de la electricidad, el costo se estima como la ponderación de la demanda adicional por el precio de la electricidad:

$$CV_OyM_Ele$$
 $\left(\frac{Euro}{PJ}\right) = eldem \times precio_ele$

Donde,

- eldem: demanda eléctrica adicional
- precio elec: precio de la electricidad

El costo por material sorbente se estima en función de la reducción de SO₂ realizada:

$$CV_OyM_Sdv(\frac{Euro}{PJ}) = FE(\frac{SO2}{PJ}) \times Ef(\%) \times (precio_sob \times sorbdem)$$

Donde.

- FE: factor de emisión de SO₂ por unidad de energía (PJ)
- Ef: eficiencia de remoción de SO₂ de la tecnología utilizada
- precio sorb: precio unitario del material sorbente
- sorbdem: demanda de sorbente por tonelada de NO_x reducido

El costo de disposición se estima en función de la reducción de SO₂ y la cantidad de subproducto a disponer:

$$CV_OyM_Dig(\frac{Euro}{PJ}) = FE(\frac{SO2}{PJ}) \times Ef(\%) \times (precio_dip \times by_prod)$$

Donde,

- precio_disp: precio unitario por disposición de residuos
- by prod: cantidad de subproducto a disponer

Gestión y Política Ambiental DICTUC S.A.

En el caso que una tecnología necesite un catalizador, el costo de reemplazo periódico se estima como:

$$CV_OyM_Ca(\frac{Euro}{PJ}) = (\frac{fp}{catvu}) \times \frac{(catvol \times catcost)}{fp}$$

Donde,

- fp: factor de planta (horas de operación por año)
- catvu: vida útil del catalizador

El costo variable de operación y mantención se estima como la suma de sus cinco componentes (mano de obra, electricidad, material sorbente, disposición de residuos y reemplazo periódico de catalizador):

$$CV_OyM$$
 $\left(\frac{Euro}{PJ}\right) = CV_OyM_Elec + CV_OyM_Solb + CV_OyM_Disp + CV_OyM_Cat$

Material Particulado (MP)

Tabla 8-30 Parámetros de Costo Tecnologías de Remoción de MP – Fuente Estacionarias con combustión – Industria / Generación Eléctrica

Tecnología	Сара	ngo cidad ap)	Coeficiente de <i>Retrofit</i> (r)	Constante de inversión (inv_c)	Variable de inversión (inv_v)	OyM Fijos (f_om)	Demanda Mano de obra (labor)	Demanda Eléctrica (eldem)	Sub- productos (by_prod)
	MW to	érmico	%/100	Euro/kW térmico	kEuro	%/año	Año-hombre por GW térmico	GWh por PJ térmico	t/t_PST
	0	- 5		19	0				
Ciclón	5	- 50	0	5	70	4	0.8	0.15	1
	>	50		3	184				
	0	- 5		47	0	4			
Precipitador electrostático, 1 campo	5	- 50	0	12	174		1.6	0.11	1
cumpo	>	50		7	461				
	0	- 5		59	0	4	1.6		
Precipitador electrostático, 2 campos	5	- 50	0	16	217			0.13	1
cumpos	>	50		8	576				
	0	- 5		2	0				
Mantención regular, calderas	5	- 50	0	2	0	4	0	0	0
	>	50		2	0				
	0	- 5		64	0				
Eliminador de polvo de alta eficiencia	5	- 50	0	18	229	4	1.6	0.15	1
	>	50		10	640				

Fuente:(Klimont, Cofala et al. 2002)

Tabla 8-31 Parámetros de Costo Tecnologías de Remoción de MP – Fuente Estacionarias con combustión – Residencial /Comercial /Servicios /Agricultura

Tecnología	Сара	ngo cidad ap)	Coeficiente de <i>Retrofit</i> (r)	Constante de inversión (inv_c)	Variable de inversión (inv_v)	OyM Fijos (f_om)	Demanda Mano de obra (labor)	Demanda Eléctrica (eldem)	Sub- productos (by_prod)
	MW to	érmico	%/100	Euro/kW térmico	kEuro	%/año	Año-hombre por GW térmico	GWh por PJ térmico	t/t_PST
	0	- 1		52	0				
Eliminador de polvo de alta eficiencia	1	- 5	0	26	0	4.5	0	0.2	1
	5	- 50		13	63				
	0	- 1		25	0				
Ciclón para caldera mediana	1	- 5		13	0	4	0	0.15	1
	5	- 50		3	46				
Caldera mediana a pellets	0	50	0	24	0	0	0	0	0
Eliminador de polvo de alta eficiencia – carbón	0	1	0	33	0	0	0	031	1
Mantención regular, calderas	0	1	0	12	0	4	0	0	0
Chimenea mejorada	0	1	0	549	0	-5.76	0	0	0
Chimenea nueva	0	1	0	592	0	-1.9	0	0	0
Caldera a leña mejorada	0	1	0	110	0	-1	0	0	0
Caldera a leña - pellets	0	1	0	225	0	-1	0	0	0
Caldera a leña – pellets y Precipitador electrostático	0	1	0	258	0	-1	0	0.1	0.09
Caldera a leña nueva	0	1	0	179	0	-1	0	0	0
Estufa a leña mejorada	0	1	0	219	0	-7.3	0	0	0
Estufa a leña – pellets	0	1	0	285	0	1.88	0	0	0
Estufa a leña – Precipitador electrostático	0	1	0	302	0	1.88	0	0.1	0.16
Estufa a leña – pellets y Precipitador electrostático	0	1	0	346	0	1.88	0	0.1	0.04

Tecnología	Сара	ngo cidad ap)	Coeficiente de <i>Retrofit</i> (r)	Constante de inversión (inv_c)	Variable de inversión (inv_v)	OyM Fijos (f_om)	Demanda Mano de obra (labor)	Demanda Eléctrica (eldem)	Sub- productos (by_prod)
	MW to	érmico	%/100	Euro/kW térmico	kEuro	%/año	Año-hombre por GW térmico	GWh por PJ térmico	t/t_PST
Estufa a leña - nueva	0	1	0	263	0	1.88	0	0	0
Caldera a carbón nueva	0	1	0	24	0	-1	0	0	0
Estufa a carbón mejorada	0	1	0	219	0	-7.3	0	0	0
Estufa a carbón nueva	0	1	0	263	0	1.88	0	0	0

Dióxido de Azufre (SO₂)

Tabla 8-32 Parámetros de Costo Tecnologías de Remoción de SO₂ – Fuente Estacionarias con combustión

Sector - Tecnología	Rango Capacidad (Cap)		Capacidad		Coeficiente de <i>Retrofit</i> (r)	Constante de inversión (inv_c)	Variable de inversión (inv_v)	OyM Fijos (f_om)	Demanda Mano de obra (labor)	Demanda Eléctrica (eldem)	Demanda Material Sorbente (sorbdem)	Sub- productos (by_prod)
	MW to	érmico	%/100	Euro/kW térmico	kEuro	%/año	Año-hombre por GW térmico	GWh por PJ térmico	t/t_SO ₂	t/t_SO₂		
	0	- 20		96	0							
Desulfuración de gases de combustión húmeda	20 - 300		0.3	82	290	4	3,33	1,6	1,56	2,5		
	>	300		43	11.947							
	0	- 20		63	0							
Inyección de piedra caliza	20	- 300	0.3	32	630	4	3,33	0,5	4,68	7,8		
	>	300		22	3.584							
Desulfuración de gases de	0	- 20		368	0							
combustión de alta	20	- 300	0.3	180	3.774	4	25,2	2,2	0,01	0,5		
eficiencia	>	300		112	23.773							

Fuente:(Cofala & Syri 1998b)

Óxidos de Nitrógeno (NO_x)

Tabla 8-33 Parámetros de Costo Tecnologías de Remoción de NO_X – Fuente Estacionarias con combustión

Sector - Tecnología	Rar Capa (Ca	cidad	Coeficiente de <i>Retrofit</i> (r)	Constante de inversión 1 (inv_c1)	Variable de inversión 1 (inv_v1)	Constante de inversión 2 (inv_c2)	Variable de inversión 2 (inv_v2)	OyM Fijos (f_om)	Demanda Eléctrica (eldem)	Demanda Material Sorbente (sorbdem)	Costo Catalizador (catcost)	Vida útil catalizador (catvu)
	MW te	érmico	%/100	Euro/kW térmico	kEuro	Euro/kW térmico	kEuro	%/año	GWh por PJ térmico	t/t_NOx	Euro/m^3	horas
Comercial – Modificación de combustión en uso de Gas	Tod	dos	0	0	0	0	3	0	0	0	-	-
Comercial/Residencial – Modificación de combustión en uso de Gas	Tod	dos	0	0	0	0	22	0	0	0	-	-
Comercial/Modificación de combustión en petróleos pesados	Tod	dos	0	0	0	0	8	0	0	0	-	-
Comercial – Modificación de combustión en uso de Diesel (<i>gasoil</i>)	Tod	dos	0	0	0	0	4	0	0	0	-	-
Comercial/Residencial – Modificación de combustión en uso de Diesel (<i>gasoil</i>)	Тос	dos	0	0	0	0	16	0	0	0	-	-
Hornos y Calderas -	0	- 20		0	0	8	0					
Petróleo y Gas – Modificación de	20	- 300	0	0	0	6	27	0	0	0	-	-
combustión	>	300		0	0	3	1,047					
Hornos y Calderas – Petróleo y Gas –	0	- 20		8	0	22	0					
Modificación de	20	- 300	0	6	27	17	105	4	0.3	0.173	25,231	80,000
combustión y Reducción catalítica selectiva	>	300		3	1,047	7	3,040					
Hornos y Calderas –	0	- 20	0	8	0	6	0	4	0.3	0.39	-	-

Sector - Tecnología		ngo cidad ap)	Coeficiente de <i>Retrofit</i> (r)	Constante de inversión 1 (inv_c1)	Variable de inversión 1 (inv_v1)	Constante de inversión 2 (inv_c2)	Variable de inversión 2 (inv_v2)	OyM Fijos (f_om)	Demanda Eléctrica (eldem)	Demanda Material Sorbente (sorbdem)	Costo Catalizador (catcost)	Vida útil catalizador (catvu)
	MW te	érmico	%/100	Euro/kW térmico	kEuro	Euro/kW térmico	kEuro	%/año	GWh por PJ térmico	t/t_NOx	Euro/m^3	horas
Petróleo y Gas – Modificación de	20	- 300		6	27	5	30					
combustión y Reducción catalítica no-selectiva	>	300		3	1,047	2	881					
Hornos y Calderas -	0	- 20		0	0	8	0					
Combustibles Sólidos – Modificación de	20	- 300	0	0	0	7	30	0	0	0	-	-
combustión	>	300		0	0	3	1,163					
Hornos y Calderas –	0	- 20		8	0	30	0					
Combustibles Sólidos – Modificación de	20	- 300	0	7	30	22	156	4	0.36	0.173	6,582	56,000
combustión y Reducción catalítica selectiva	>	300		3	1,163	8	4,503					
Hornos y Calderas – Combustibles Sólidos –	0	- 20		8	0	9	0					
Modificación de	20	- 300	0	7	30	6	45	0.36	0.39	0.36	-	-
combustión y Reducción catalítica no-selectiva	>	300		3	1,163	2	1,305					
Central Existente - Carbón	0	- 20		0	0	14	0					
de lignita – Modificación de combustión	20	- 300	0	0	0	11	51	0	0	0	-	-
	>	300		0	0	7	1,238					
Central Existente - Carbón	0	- 20		14	0	36	0					
de lignita - Modificación de combustión y	20	- 300	40	11	51	27	187	4	0.36	0.117	6,582	56,000
Reducción catalítica selectiva	>	300		7	1,238	9	5,404					
Central Nueva - Carbón de lignita - Reducción	0	- 20		0	0	36	0					
catalítica selectiva	20	- 300	0	0	0	27	187	4	0.36	0.39	6,582	56,000
	>	300		0	0	9	5,404					

Sector - Tecnología	Rar Capa (Ca	cidad	Coeficiente de <i>Retrofit</i> (r)	Constante de inversión 1 (inv_c1)	Variable de inversión 1 (inv_v1)	Constante de inversión 2 (inv_c2)	Variable de inversión 2 (inv_v2)	OyM Fijos (f_om)	Demanda Eléctrica (eldem)	Demanda Material Sorbente (sorbdem)	Costo Catalizador (catcost)	Vida útil catalizador (catvu)
	MW te	érmico	%/100	Euro/kW térmico	kEuro	Euro/kW térmico	kEuro	%/año	GWh por PJ térmico	t/t_NOx	Euro/m^3	horas
Central Existente - Carbón	0	- 20		0	0	8	0					
de antracita – Modificación de	20	- 300	0	0	0	7	30	0	0	0	-	-
combustión	>	300		0	0	3	1,163					
Central Existente - Carbón de antracita -	0	- 20		8	0	30	0					
Modificación de	20	- 300	40	7	30	22	156	4	0.36	0.173	6,582	56,000
combustión y Reducción catalítica selectiva	>	300		3	1,163	8	4,503					
Central Nueva - Carbón de antracita - Reducción	0	- 20		0	0	30	0					
catalítica selectiva	20	- 300	40	0	0	22	156	4	0.36	0.39	6,582	56,000
	>	300		0	0	8	4,503					
Central Existente –	0	- 20		0	0	5	0					
Petróleo y Gas – Modificación de	20	- 300	0	0	0	4	19	0	0	0	-	-
combustión	>	300		0	0	3	1,061					
Central Existente -	0	- 20		5	0	22	0					
Petróleo y Gas - Modificación de	20	- 300	40	4	19	17	105	4	0.3	0.117	25,231	80,000
combustión y Reducción catalítica selectiva	>	300		3	1,061	7	3,040					
Central Nueva - Petróleo	0	- 20		0	0	22	0					
y Gas - Reducción catalítica selectiva	20	- 300	40	0	0	17	105	4	0.3	0.39	25,231	80,000
	>	300		0	0	7	3,040					

Fuente:(Cofala & Syri 1998a)

8.4.2.3.2 Fuentes con emisión no asociada a la combustión de combustible

Para este caso, GAINS utiliza dos maneras para estimar los costos:

- MP (procesos industriales): ecuaciones de costo (ver sección8.4.2)
- MP (otras fuentes), SO₂ y NO_X: costos unitarios por unidad de actividad según lo presentado en las siguientes tablas según contaminante principal.

A continuación, se presentan las tablas de parámetros de costo (para MP) y costos unitarios (SO_2 y NO_X), que permitirán estimar los costos de aplicar una medida de reducción para aquellas fuentes con emisiones no asociadas a la combustión de combustibles.

Material Particulado

Para el caso de los procesos industriales, se presentan los parámetros de costo para cuatro medidas: buenas prácticas, ciclones, precipitador electrostático de 1 y 2 campos y eliminador de polvo de alta eficiencia.

Tabla 8-34 Parámetros de Costo Tecnologías de Remoción de MP – Procesos Industriales – Buenas prácticas (emisiones fugitivas)

Sector	Coeficiente de <i>Retrofit</i> (r)	Constante de inversión (inv_c)	OyM Fijos (f_om)	Demanda Mano de obra (labor)	Demanda Eléctrica (eldem)	Sub- productos (by_prod)
	%/100	Euro/kW térmico	%/año	Año-hombre por GW térmico	GWh por PJ térmico	t/t_PST
Hierro fundido – Etapa 1	0	37.52	3	0	10.4	0
Pig Iron – Etapa 1	0	16.44	4	0	1.13	0
Planta de aglomeración – Etapa 1	0	1.84	4	0	1.04	0
Pequeña industria e instalaciones de negocios – Etapa 1	0	37.52	3	0	10.4	0
Hierro fundido – Etapa 2	0	44.04	3	0	12	0
Pig Iron – Etapa 2	0	19.31	4	0	1.3	0
Planta de aglomeración – Etapa 2	0	2.17	4	0	1.2	0
Pequeña industria e instalaciones de negocios – Etapa 2	0	44.04	3	0	12	0

Tabla 8-35 Parámetros de Costo Tecnologías de Remoción de MP – Procesos Industriales – Ciclón

Sector	Coeficiente de <i>Retrofit</i> (r)	Constante de inversión (inv_c)	OyM Fijos (f_om)	Demanda Mano de obra (labor)	Demanda Eléctrica (eldem)	Sub- productos (by_prod)
	%/100	Euro/kW térmico	%/año	Año-hombre por GW térmico	GWh por PJ térmico	t/t_PST
Producción Primaria de Aluminio	0	37.52	3	0	10.4	0
Producción Secundaria de Aluminio	0	16.44	4	0	1.13	0
Horno de oxígeno básico	0	1.84	4	0	1.04	0
Producción de briquetas	0	37.52	3	0	10.4	0
Hierro Fundido (fundiciones)	0	44.04	3	0	12	0
Producción de carbón negro	0	19.31	4	0	1.3	0
Producción de cemento	0	2.17	4	0	1.2	0
Horno de coque	0	44.04	3	0	12	0
Horno de arco eléctrico	0	1.6	4	0	1.13	0.5
Producción de fertilizantes	0	6.98	3	0	6.68	0.5
Producción de vidrio	0	10.64	4	0	1.1	0.5
Horno de chimenea abierta	0	0.31	4	0	0.3	0
Producción de Cal	0	11.07	3	0	9	0.5
Producción de fibra de vidrio, yeso, PVC y otros	0	0.27	4	0	0.3	0
Producción primaria y secundaria de otros metales no-ferrosos	0	1.52	4	0	4.99	0
Pig Iron, Alto Horno	0	0.26	4	0	0.3	0.5
Petróleo crudo y otros productos de entrada a refinerías de petróleo	0	0.58	4	0	0.83	0.5
Plantas de aglomeración - sinter	0	0.58	4	0	1.05	0

Tabla 8-36 Parámetros de Costo Tecnologías de Remoción de MP – Procesos Industriales – Precipitador electrostático de 1 campo

Sector	Coeficiente de <i>Retrofit</i> (r)	Constante de inversión (inv_c)	OyM Fijos (f_om)	Demanda Mano de obra (labor)	Demanda Eléctrica (eldem)	Sub- productos (by_prod)
	%/100	Euro/kW térmico	%/año	Año-hombre por GW térmico	GWh por PJ térmico	t/t_PST
Producción primaria de aluminio	0	3.98	4	0	0.83	0.5
Horno de oxígeno básico	0	26.4	4	0	0.81	0.5
Producción de briquetas	0	0.75	4	0	0.22	0
Hierro fundido	0	27.46	3	0	6.6	0.5
Producción de Cemento	0	3.76	4	0	3.67	0
Horno de Coque	0	0.67	4	0	0.22	0.5
Producción de vidrio	0	3.24	4	0	0.61	1
Horno de chimenea abierta	0	4.3	4	0	1.83	0.5
Producción de Cal	0	13.16	4	0	6	0
Producción de fibra de vidrio, yeso, PVC y otros	0	4.37	4	0	1.1	1
Pig Iron, Alto Horno	0	3.23	5	0	1.25	0.5
Petróleo crudo y otros productos de entrada a refinerías de petróleo	0	0.23	4	0	0.06	1
Plantas de aglomeración - sinter	0	1.48	6	0	0.88	0.2

Tabla 8-37 Parámetros de Costo Tecnologías de Remoción de MP – Procesos Industriales – Precipitador electrostático de 2 campos

Sector	Coeficiente de <i>Retrofit</i> (r)	Constante de inversión (inv_c)	OyM Fijos (f_om)	Demanda Mano de obra (labor)	Demanda Eléctrica (eldem)	Sub- productos (by_prod)
	%/100	Euro/kW térmico	%/año	Año-hombre por GW térmico	GWh por PJ térmico	t/t_PST
Producción primaria de aluminio	0	4.97	4	0	0.98	0.5
Horno de oxígeno básico	0	32.9	4	0	0.95	0.5
Producción de briquetas	0	0.93	4	0	0.26	0
Hierro fundido	0	34.19	3	0	7.8	0.5
Producción de Cemento	0	4.7	4	0	4.33	0
Horno de Coque	0	0.82	4	0	0.26	0.5
Producción de vidrio	0	4.03	4	0	0.72	1
Horno de chimenea abierta	0	5.34	4	0	2.17	0.5
Producción de Cal	0	14.59	4	0	6.5	0
Producción de fibra de vidrio, yeso, PVC y otros	0	5.44	4	0	1.3	1
Pig Iron, Alto Horno	0	4	5	0	1.47	0.5
Petróleo crudo y otros productos de entrada a refinerías de petróleo	0	0.27	4	0	0.07	1
Plantas de aglomeración - sinter	0	1.84	6	0	1.04	0.2

Tabla 8-38 Parámetros de Costo Tecnologías de Remoción de MP – Procesos Industriales – Eliminador de polvo de alta eficiencia

Sector	Coeficiente de <i>Retrofit</i> (r)	Constante de inversión (inv_c)	OyM Fijos (f_om)	Demanda Mano de obra (labor)	Demanda Eléctrica (eldem)	Sub- productos (by_prod)
	%/100	Euro/kW térmico	%/año	Año-hombre por GW térmico	GWh por PJ térmico	t/t_PST
Producción Primaria de Aluminio	0	5.83	4	0	1.13	0.5
Producción Secundaria de Aluminio	0	27.75	3	0	8.9	0.5
Horno de oxígeno básico	0	38.61	4	0	1.1	0.5
Producción de briquetas	0	1.09	4	0	0.3	0
Hierro Fundido (fundiciones)	0	40.16	3	0	9	0.5
Producción de carbón negro	0	1.09	4	0	0.4	0
Producción de cemento	0	5.52	4	0	18.9	0
Horno de coque	0	0.97	4	0	0.3	0.5
Horno de arco eléctrico	0	2.29	4	0	1.1	0.5
Producción de fertilizantes	0	2.29	4	0	1.4	0
Producción de vidrio	0	4.73	4	0	0.83	1
Horno de chimenea abierta	0	6.27	4	0	2.5	0.5
Producción de Cal	0	17	4	0	6.86	0
Producción de fibra de vidrio, yeso, PVC y otros	0	6.4	4	0	1.5	1
Producción primaria y secundaria de otros metales no-ferrosos	0	23.54	3	0	4.13	0.5
Pig Iron, Alto Horno	0	4.71	5	0	1.7	0.5
Petróleo crudo y otros productos de entrada a refinerías de petróleo	0	0.33	4	0	0.08	1
Plantas de aglomeración - sinter	0	2.17	6	0	1.2	0.2

NOTA: valores actualizados en el modelo GAINS (Euro 2005)

155

Para el caso de otras fuentes, el costo se estima en base a un costo unitario por unidad de actividad. A continuación se presentan los valores de costo unitario para la reducción de material particulado:

Tabla 8-39 Parámetros de Costo Tecnologías de Remoción de MP – Otras Fuentes

Tecnología de Control	Costo Unitario
	Euro/kg MP (PTS)
Agricultura	
Modificación de alimentación (todo ganado)	12.07
Silo de heno para bovinos	12.07
Aves en corrales al aire libre	24.13
Agricultura de labranza baja, cosecha alternativa de cereales	6.03
Buenas prácticas (otros animales) [opción genérica]	12.07
Otras fuentes	
Buenas prácticas, almacenaje y manejo	6.03
Buenas prácticas en industrial del petróleo y gas, quema de gas	12.07
Prohibición de quema abierta de desechos	0.08
Buenas prácticas en industria de la minería	6.03
Pulverización de agua en sitios de construcción	12.07
Filtros en viviendas (cocinas)	1.21
Genérico (ej. lavado de calles)	120.67

Fuente: (Klimont, Cofala et al. 2002)

Dióxido de Azufre (SO₂)

Tabla 8-40 Parámetros de Costo Tecnologías de Remoción de SO₂ – Fuentes con emisión no asociada a la combustión de combustible

Sector	Subsector	Unidad de Actividad (un_act)	Etapa 1	Etapa 2	Etapa 3
			I	MEuro/un_a	ct
	Producción de cemento	Mton	0,33	0,61	1,84
	Horno de coque	Mton	0,23	0,38	0,54
	Producción de vidrio	Mton	1,53	2,19	3,07
	Producción de Cal	Mton	0,25	0,46	1,37
Dracasas	Ácido Nítrico	Mton	0	0	0
Procesos Industriales	Producción de otros metales no-ferrosos	Mton	18,58	30,28	43,56
industriales	Producción de hierro, alto horno	Mton	0,01	0,01	0,02
	Fábrica de pulpa de papel	Mton	1,85	3,03	4,36
	Petróleo crudo y otros productos	Mton	0,08	0,22	0,36
	Plantas de aglomeración	Mton	0,23	0,37	0,55
	Ácido sulfúrico	Mton	2,33	3,78	5,44
	Prohibición de quema abierta de desechos agrícolas	Mton	0,34		
Desechos	Buenas prácticas en industrial del petróleo y gas, quema de gas	PJ	0,04		
	Prohibición de quema abierta de desechos residenciales	Mton	0,58		

Fuente:(Cofala & Syri 1998b)

NOTA: valores actualizados en el modelo GAINS (Euro 2005)

Informe 4

Óxidos de Nitrógeno (NO_x)

Tabla 8-41 Parámetros de Costo Tecnologías de Remoción de NO_x – Fuentes con emisión no asociada a la combustión de combustible

Sector	Subsector	Unidad de Actividad (un_act)	Etapa 1	Etapa 2	Etapa 3
			I	MEuro/un_a	ct
	Producción de cemento	Mton	0,27	0.49	1.1
	Horno de coque	Mton	0,13	0.59	1.32
	Producción de vidrio	Mton	0,11	0.24	2.14
	Producción de Cal	Mton	0,28	0.5	1.12
Dunnan	Ácido Nítrico	Mton	1,59	7.13	15.91
Procesos Industriales	Producción de otros metales no-ferrosos	Mton	0,39	1.76	3.95
illuustilales	Producción de hierro, alto horno	Mton	0,03	0.12	0.26
	Fábrica de pulpa de papel	Mton	0,03	0.12	0.26
	Petróleo crudo y otros productos	Mton	0,11	0.36	0.66
	Plantas de aglomeración	Mton	0,13	0.6	1.32
	Ácido sulfúrico	Mton	0	0	0
	Prohibición de quema abierta de desechos agrícolas	Mton	n 0,34		
Desechos	Buenas prácticas en industrial del petróleo y gas, quema de gas	PJ	0,77		
	Prohibición de quema abierta de desechos residenciales	Mton 0,58			

Fuente:(Cofala & Syri 1998a)

NOTA: valores actualizados en el modelo GAINS (Euro 2005)

8.4.2.3.3 Fuentes Móviles

Para el caso de las fuentes móviles, los costos de opciones de control se presentan de dos maneras:

- 1. Mejores Tecnologías: se presentan costos unitarios por tecnología, además de porcentajes asociados al costo de operación y mantención y del aumento de demanda por combustible.
- 2. Combustibles con menor contenido de azufre: se presenta un costo incremental de pasar a un combustible más limpio.

Mejores Tecnologías

A continuación (Tabla 8-42, Tabla 8-43 y Tabla 8-44) se presentan las medidas para las fuentes móviles para reducción de material particulado:

Tabla 8-42 Costos Tecnológicos – transporte de carretera - Diesel

Tipo de vehículo	Tecnología	Inversión	Costo Fijo OyM	Demanda Combustible
		Euro/veh	%Inv/año	%
	Euro I	65	21.19	0
	Euro II	201	6.45	0
	Euro III	389	3.38	0
Vehículos Livianos	Euro IV	588	2.46	0
	Euro V	961	1.5	0
	Euro VI	1,172	1.23	1.5
	Euro VII	1,406	1.48	1.8
	Euro I	1,628	1.6	0
	Euro II	3,066	5.34	1
	Euro III	4,526	5.35	1
Vehículos Pesados	Euro IV	8,326	5.76	1
	Euro V	9,150	4.91	6
	Euro VI	12,770	3.52	6
	Euro VII	15,324	4.22	7.2

Tabla 8-43 Costos Tecnológicos – transporte Off-Road- Diesel

Tipo de vehículo	Tecnología	Inversión	Costo Fijo OyM	Demanda Combustible
		Euro/veh	%Inv/año	%
	Euro I	203	2.5	0
	Euro II	1,667	2.5	1
Vehículos de	Euro III	2,688	2.5	1
construcción y agricultura	Euro IV	7,624	2.5	1
20	Euro V	8,471	2.5	6
	Euro VI	12,091	1.75	6
	Euro I	3,208	2.5	0
	Euro II	6,212	2.5	1
Trenes y vías	Euro III	13,968	2.5	1
navegables interiores	Euro IV	24,995	2.5	1
	Euro V	27,773	2.5	6
	Euro VI	29,655	2.5	6
	Modificación de combustible, embarcaciones medianas	53,807	0.82	0
Actividades	Modificación de combustión, embarcaciones grandes – fuel oil	862,066	1.1	0
marítimas: Barcos	Modificación de combustión, embarcaciones grandes - diesel	862,066	1.1	0
	Reducción catalítica selectiva, embarcaciones grandes – fuel oil	647,200	34.11	0

Tabla 8-44 Costos Tecnológicos – motores con encendido a chispa

Tipo de vehículo Tecnologí		Inversión	Costo Fijo OyM	Demanda Combustible
		Euro/veh	%Inv/año	%
	Euro I	276	6.36	0
	Euro II	284	4.56	0
Vehículos livianos - inyección directa	Euro III	363	5.09	0
veniculos liviarios - injección directa	Euro IV	408	3.08	0
	Euro V	459	2.7	0
	Euro VI	627	2.85	0
	Euro I	276	6.36	0
	Euro II	284	4.56	0
Vehículos livianos - motor de cuatro tiempos, sin	Euro III	363	5.09	0
inyección directa	Euro IV	408	3.08	0
	Euro V	459	2.7	0
	Euro VI	627	2.85	0
	Etapa 1	57	3	0
Motocicletas, motor de 2 tiempos	Etapa 2	127	3	0
	Etapa 3	284	3	0
	Etapa 1	68	3	0
Motocicletas, motor de 4 tiempos	Etapa 2	211	3	0
	Etapa 3	382	3	0
Nah Gulas masadas makana da amam P. I	Etapa 1	2,440	3	0
Vehículos pesados, motores de encendido por chispa	Etapa 2	2,515	3	0
	Etapa 3	3,305	3	0

NOTA: valores actualizados en el modelo GAINS (Euro 2005)

Combustibles con menor contenido de azufre

Además se considera, al igual que para los otros sectores, el cambio a combustibles con menor contenido de azufre, en cuyo caso la reducción estaría directamente relacionada con el combustible seleccionado. En la tabla a continuación, se presentan los costos incrementales utilizados para estimar el costo final de pasar de un combustible a otro con menor contenido de azufre:

Medida	Costo Incremental
	MEuro/PJ/%S
Antracita a Carbón de bajo azufre (0.6 %S)	0,365
Diesel a Diesel con bajo contenido de azufre - Etapa 1 (0.2 % S)	0,903
Diesel a Diesel con bajo contenido de azufre - Etapa 2 (0.045 % S)	2,707
Diesel a Diesel con bajo contenido de azufre - Etapa 3 (0.001 % S)	6,695
Fuel-oil pesado a Fuel-oil con bajo contenido de azufre (0.6 %S)	0,308
Gasolina a Gasolina con bajo contenido de azufre (0.001 %S)	0

8.5 Estrategias de Control SCAQMD

Tabla 8-46 Estrategias de Control Plan de Gestión de Calidad de Aire SCAQMD

Tipo de Fuente	Tipo de Medidas	Objetivo	Contaminante	Métodos de Control	Costo
Estacionarias	Corto Plazo - 24 hr MP2,5	Reducción de emisiones en instalaciones RECLAIM - fase I	NO _X	Varias tecnologías y métodos de control	7.950 USD/ton NO _x
		Reducción de emisiones equipos residenciales a leña	MP2,5	Norma más restrictiva en episodios de alta contaminación	S/I
		Reducción de emisiones quemas abiertas	MP2,5	Restricción episódica en períodos de alta contaminación	S/I
		Reducción de emisiones parrillas comerciales (e.g. restaurantes)	MP2,5	Equipos de control (e.g. precipitador electrostático, depurador húmedo, etc.) con requerimientos de ventilación	15.000 USD/ton MP2,5
		Reducción de emisiones ganadería	NH ₃	Aplicación episódica de acidificación de estiércol	S/I
		Medidas para reducir emisiones indirecta de puertos y fuentes asociadas a puertos	NO _x , SO _x , MP2,5	Planes de control, requerimientos, normas, tarifas e incentivos/desincentivos	S/I
		Reducción de emisiones mediante programas de educación, difusión e incentivos	Todos	Mayor conciencia, programas de incentivos, asesoría en compras verdes, implementación de proyectos de eficiencia, y técnicas de conservación	S/I
		Evaluación de todas las medidas factibles	Todas	Cualquier método	S/I
	Tempranas - 8 hr de ozono	Reducción de emisiones recubrimiento arquitectónico	cov	Reducción de límite de COV para algunos recubrimientos a 25 g/l, remover o restringir excepciones a contenedores pequeños, y/o incluir requerimientos de eficiencia de transferencia	10.000 - 20.000 USD/ton COV
		Reducción de emisiones recubrimiento, adhesivos, solventes y lubricantes	COV	Reducir contenido de COV permitido en formulación de productos	8.000 - 12.000 USD/ton COV
		Reducción de emisiones productos desmoldeantes	cov	Reducción del límite de COV en productos desmoldeantes	4.000 - 8.000 USD/ton COV
		Reducción de emisiones productos al consumidor	COV	Eliminar o revisar la exención para solventes de baja presión de vapor en productos al consumidor	< 10.000 USD/ ton COV
		Reducción de emisiones instalaciones RECLAIM - fase II	NO _X	Varias tecnologías y métodos de control	16.000 USD/ton NO _X
		Reducción de emisiones rellenos	NO _x , COV	Reducción de NO _x en llamas de biogás.	20.000 USD/ton NO _X

Informe 4

Tipo de Fuente	Tipo de Medidas	Objetivo	Contaminante	Métodos de Control	Costo
		sanitarios y llamas de tratamiento de desechos		BACT (best available control technology, mejor tecnología de control disponible)	
		Calefacción de espacios comerciales	NO _x	Reducción de NOX para calefacción de espacios comerciales (equipos baja emisión o Quemador de Bajo NOx)	20.000 USD/ton NO _x
		Reducción de emisiones de camiones de aspirado usados en instalaciones de petróleo	COV	Varias tecnologías y métodos de control	3.000 USD/ton COV
		Reducción de emisiones reabastecimiento gas propano	cov	Fase I:retrofit de estanques de almacenamiento (medidores de líquido de baja emisión y conectores de transferencia y dispensión de baja emisión) Fase II: Expandir la norma para regular a otras instalaciones	4.000 - 10.000 USD/ton COV
		Reducción de emisiones fugitivas	COV	Programas mejorados/expandidos de detección de fugas	11.000 USD/ton COV
		Reducción de emisiones procesamiento de biomasa (<i>chipping</i> y molido no asociado a compostaje)	COV	Todas las medidas potencialmente factibles	S/I
		Mejora de procedimientos de encendido, apagado y vuelta.	Todos	Procedimientos operacionales	S/I
		Programas de incentivos económicos para adoptar equipos de combustión más limpios y eficientes	Todos	Todos los métodos de control	S/I
		Facilitar entrega de permisos para fabricación de tecnologías limpias y cero emisiones	Todos	Incentivos voluntarios	Sin Costo
		Reducción de emisiones mediante programas de educación, difusión e incentivos	Todos	Mayor conciencia, programas de incentivos, asesoría en compras verdes, implementación de proyectos de eficiencia, y técnicas de conservación	S/I
		Evaluación de todas las medidas factibles	Todos	Cualquier método	S/I
Móviles - En Ruta	Tempranas - 8 hr de ozono	Penetración acelerada vehículos de baja emisión o cero emisión	NO _x , COV	Programas de incentivos	Financiamiento mínimo: 5.000.000 USD/año. Hasta el año 2023, 1.000 vehículos por año. 5.000

Tipo de Fuente	Tipo de Medidas	Objetivo	Contaminante	Métodos de Control	Costo
					USD/vehículo
		Retiro acelerado vehículos livianos y medianos antiguos	NO _x , MP	Programas de incentivos	Financiamiento mínimo: 5.000.000 USD/año. Hasta el año 2023, 2.000 vehículos por año. 2.500 USD/vehículo
		Penetración acelerada vehículos medianos de baja emisión o cero emisión	NO _χ , MP	Programas de incentivos	Financiamiento: 25.000.000 USD/año. 25.000 USD/vehículo, con el objetivo de 1.000 vehículos híbridos y cero emisiones.
		Retiro acelerado vehículos pesados antiguos	NO _x , MP	Programas de incentivos	Financiamiento: 50.000.000 USD/año. 35.000 USD/vehículo reemplazado
Móviles - Fuera de Ruta	Tempranas - 8 hr de ozono	Extensión del financiamiento (programa SOON) para equipamiento construcción/industrial	NO _X	Reemplazo acelerado o <i>retrofit</i> de motores antiguos	Financiamiento: 30.000.000 USD/año. Se estima en 11.000 USD/ton NO _X aproximadamente. Se espera transformar unos 1.200 motores Tier 0 a Tier 4 al año 2023
		Reducción de emisiones transporte de carga - trenes	NO _x , MP	Reemplazo acelerado de motores existentes	S/I
		Reducción de emisiones transporte de pasajeros - trenes	NO _x , MP	Reemplazo acelerado de motores existentes	5.000 USD/ton NO _x
		Reducción de emisiones embarcaciones oceánicas en atraco	NO _X	Uso de tecnologías eléctricas o equivalentes (limpias)	S/I
		Reducción de emisiones embarcaciones oceánicas en viaje	NO _X	Incentivo a embarcaciones más modernas (Tier 2 y Tier 3)	Costos varían según tipo de control

Fuente: (SCAQMD 2012)

