

RISK-BASED MODEL FOR PRIORITIZATION OF ENVIRONMENTAL INSPECTIONS IN CHILE

Nicolás Borchers , Luis A. Cifuentes, Andrés Pica, Andrés Romero Department of Industrial and Systems Engineering Pontificia Universidad Católica de Chile Sydney, Australia, July 20th 2012

SRA – World Congress on Risk 2012 "Risk and Development in a Changing World"

Risk-based Model for Prioritization of Environmental Inspections in Chile

Contents

- Introduction
- Method

Structure of the ModelIndexes

Data

Conclusions

Introduction: Context and Motivation

- In Chile, the recently modified (2011) environmental law created the Superintendence of the Environment (SOE).
- One of the SOE's main objectives is to inspect the compliance of all projects or activities with environmental permits (> 12,000)
- The SOE's task force has a current capacity to inspect approximately 1,000 sites yearly.
- \rightarrow There is a strong need to prioritize inspection efforts

Current Practice

- OECD and Latin American countries' risk estimation methodologies used for different purposes (licensing, prioritization, etc.) were reviewed
- The most comprehensive, UK's OPRA (Operational Risk Appraisal), considers the following attributes to profile a site:
 - Installation complexity
 - Emissions and inputs
 - Location
 - Operator performance
 - Compliance rating
- □ The site profile is used to:
 - Plan use of resources
 - Report the performance on the regulated sites
 - Define charges for permits

Method: A simple equation for risk estimation

The objective risk of the activity **A** associated with the release of a primary pollutant **P** that affects a receptor **R**, through a secondary pollutant **C**, is given by:

$$Risk_{C,A}^{P,R} = UR_{C}^{R} \left[\frac{R}{ppm} \right] \cdot AL_{A} \left[\frac{act}{day} \right] \cdot EF_{A}^{P} \left[\frac{g}{act} \right] \cdot ECF_{C}^{P} \left[\frac{ppm}{g/day} \right] \cdot Pop_{C}^{R}[p]$$
Risk Agent
Project or
Surrounding
environment

where:

- UR: Unitary Risk
- AL: Activity Level
- EF: Emission Factor
- ECF: Emission-Concentration Factor
- Pop: Population

- P: primary pollutant
- C: secondary pollutant
- R: receptor
- A: activity

- In practice, it is impossible (or extremely difficult) to estimate the risk for each of the more than 12,000 activities or projects with environmental permits.
- There are information gaps from a work in progress environmental information system.
- To do this, an approximate model that considers the characteristics of each activity or project and characteristics of the surrounding environment, was developed.
- The model considers:
 - Project characteristics
 - Geographic and demographic variables
 - Identified environmental components
 - Data from the compliance and inspection records

Framework for Environmental Inspections Prioritization in Chile

 $AdjustedRR_{P} \sim RR_{P} \cdot CH_{P}$

Release Potential Index

- This index represents the release potential of risk agents to the environment
- □ Types considered:
 - Air Emissions
 - Water Discharges
 - Discharges onto the Sewage System
 - Waste Generation
- The index considers two dimensions:
 - Magnitude of the release
 - Hazardousness of the risk agent released
- □ Three adjustments ("punishments") are made, according to:
 - Baseline Environmental Quality
 - Environmental Monitoring
 - Non-compliance Records

Release Potential Index Estimation

 Magnitude of release of risk agent c into medium m by project/activity i:

2. The magnitude of release (or potential release) is expanded by the three adjustments:

$$Final_Release_{c,m}^{i} = Release_{c,m}^{i} \cdot W_{BLEQ} \cdot W_{Mon} \cdot W_{NCR}$$

- 3. The **hazardousness** of the released risk agent **c** onto the medium **m** $Hazardousness_{c,m} \approx \frac{1}{Threshold_{c,m}}$ 4. The release potential index is estimated as:
- $I_{RE} = Final_Release_{m}^{i} \times Hazardousness_{c,m} \approx 1$

Final_Release'_m

Relase Potential Index Adjustments

	If the baseline env. quality is:	W(BF	-Q)
			-~,
Baseline	Compliant	1.0)
	Latent Zone	1.1	L
Environmental	Saturated Zone	1.3	3
Quality	EPP or EDP Zone	1.5	5
Quany			
	If the Environmental Monitoring has detected	ed:	W(Mon)
Environmental	Nothing		1.0
	Non-compliance through Social Monitoring		1.3
Monitoring	Non-compliance through Env. Quality Station	S	1.5
	If the non-compliance records show:	W	/(NCR)
	With no sanction nor admonition		1.0
Non-compliance	Admonition or warning		1.1
Decerde	< USD 18,500	1.2	2 – 1.3
Records	> USD 18,500	1.3	3 – 1.5

Surrounding Environment Index

- This index has the objective of characterizing the surrounding environment of each project, focusing on the following receptors:
 - Human Population
 - Ecosystems (Natural Resources)
 - Cultural Heritage
- □ 3 buffers representing different influence areas are considered:
 - **250** m
 - □ 1,000 m
 - **4,000** m
- □ It is constructed based on the following dimensions:
 - Vulnerability
 - Exposure

Receptors considered - details

Human Population	Ecosystems	Cultural Heritage
 Urban Rural 	 Protected Areas SNASPE Private Protected Areas Natural Sanctuaries RAMSAR Sites Bodies of water Native Forests Protected Marine Coastal Areas Protected Aquifers and Lowlands Priority Sites for Biodiversity conservation 	 National monuments Indigenous Reserve and Development Areas Touristic interest sites Historic/scientific interest Areas

Exposure Estimation

For each receptor, if there are elements contained within each buffer, a score will be activated:

	Proximity (m)	Score
	<250	10
	250 – 1,000	6
в	1,000-4,000	1

□ The exposure variable is a 3X3 matrix: 3 receptors vs. 3 buffer

 \rightarrow

Elements contained within the buffer?							
Pacantar	Buffer						
Receptor	250	1,000	4,000				
Human Population	uman Population yes yes yes						
Ecosystems	no yes no						
Cultural heritage no no yes							

Score for exposure sub-index						
Pacantar	Buffer					
Receptor	250 1,000 4,0					
Human population	10	6	1			
Ecosystems	0	6	0			
Cultural heritage	Cultural heritage 0					

Vulnerability: How is it considered?

Human Population:

- size of potentially exposed population
- characteristics of potentially exposed population:
 - 🗖 age
 - socio-economic status
- Ecosystems and Cultural Heritage
 - Number of potentially exposed elements
 - (characteristics of exposed elements)

Vulnerability Estimation

- For each buffer and receptor scores are assigned according to the vulnerability of the receptor:
 - Human Population:

Age		Socioeconomic group					
Group		Indigent	Poor	Non-poor			
		3	2	1			
Under-age	1	3	2	1			
Adults	1	3	2	1			
Elders	2	6	4	2			

- Ecosystems and Cultural Heritage:
 - neutral scores of 1, due to the lack of information concerning the relative vulnerability of the different sensitive layers of information used

$Vuln = Elem \times AS \approx Elem \times 1$

Surrounding Environment Index – Estimation

1) Surrounding Environment Score (SES):

$$SES^{R} = Exp^{R} \times Vuln^{R}$$

2) Normalization of SES (NSES):

$$NSES^{R} = \frac{\left(SES^{R} - min(SES^{R})\right)}{\left(max(SES^{R}) - min(SES^{R})\right)} \cdot (100 - 1) + 1$$

3) Surrounding Environment Index (SEI):

$$I_{SE}^{i} = \frac{1}{3} \cdot \left(NSES^{Population} + NSES^{Ecosystems} + NSES^{CulturalHeritage} \right)$$

Risk Perception Index

Bronfman, N. and L. A. Cifuentes (2003). "Risk Perception in a Developing Country: The Case of Chile." *RiskAnalysis* 6(3): 1309-1323.

- □ A survey was conducted to 508 residents in Santiago, Chile.
- The survey included 54 hazards, 16 risk attributes, and 3 risk constructs.

Perceived risk scores were estimated for each of the 54 hazards:

- Environmental Hazards
- Technological Hazards
- Forbidden or addictive substances
- Chemical products and substances
- Natural disasters and social ills

Risk Perception Scores

Source: Bronfman and Cifuentes (2003)

Risk Perception Index Estimation

 Risk scores related to environmental hazards are normalized for an average risk score of 1

$$NRS^{h} = \frac{RS^{h}}{average(RS^{h})}$$

2) For each type of project, the risk perception index is obtained as the maximum normalized risk score for all associated hazards

The project types with average social risk score obtain an index value of 1 (neutral)

Compliance and Inspection Records Adjustment

Through the Compliance and Inspection Records, an adjustment to the order of priorities is made, depending on the time that has elapsed since the last Inspection:

Time since the last Inspection (years)	CIR Adjustment
1	1.0
2	1.1
>=3	1.2

Relative Environmental Risk Estimation

- Perceived Risk Index (PRI) is estimated as the product of:
 - Release Potential Index

Surrounding Environment Index

Risk Perception Index

$$PRI^{i} = I^{i}_{RE} \cdot I^{i}_{SE} \cdot I^{i}_{RP}$$

- 2) Then, the PRI value is normalized for a minimum of 1 and maximum of 100.
- 3) The final score to obtain the listing for environmental inspections:

$$RER^{i} = PRI^{i} \cdot CIR_Adj^{i}$$

Data

Data was obtained from:

- Projects:
 - SEA (environmental assessment system)
 - RETC (pollutant release and transfer register)
- Environmental Monitoring:
 - national environmental monitoring network
- Environmental Components:
 - GIS layers of ecosistemic and cultural heritage
 - National population census
 - National health survey

Imputation of missing data

- In order for the risk model to work properly, it is important to estimate the risk of all sources (since it is a relative risk model).
- For any index, if there is no data, it is necessary to fill in data points using the best available information.
- In general, the following protocol for data imputation is used:
 - 1. Real data
 - 2. Regulation data (e.g. emission standards)
 - 3. Generic data that characterizes the specific industrial sector or surrounding environment
- The results of the assessment are refined automatically when the quality of information available is improved.

Quick Example

Release Score Estimation - Example

Site	Pollutant	Real Emissions	Permitted Emissions		Average Emissions by CIIU	Final Releases
			Source	Sector		
			(kg/	year)		(kg/year)
	PM2.5	1.000	1.500	1.800	1.800	1.000
1	NOX	Doesn't Emit	20.000	25.000	27.000	0
	SOX	40.000	10.000	15.000	18.000	40.000
	PM2.5	N/A	1.500	1.800	2.000	1.800
2	NOX	N/A	20.000	25.000	30.000	25.000
	SOX	N/A	10.000	15.000	20.000	15.000
	PM2.5	N/A	N/A	N/A	2.200	2.200
3	NOX	N/A	N/A	N/A	33.000	33.000
	SOX	N/A	N/A	NA	22.000	22.000

Release Index Estimation - Example

Assuming that no adjustment has to be done relating baseline environmental quality, environmental monitoring and noncompliance records:

Site	Pollutant	Release (kg/year)	Threshold* (kg/year)	Score (Rel/Thresh)	Score on Aire Releases	Release Potential Index
	PM2.5	1,000	20,000	0.05		
1	NOX	0	100,000	0	1.32	1
	SOX	40,000	150,000	0.27		
	PM2.5	1,800	200,00	0.09		
2	NOX	25,000	100,000	0.25	1.44	46
	SOX	15,000	150,000	0.1		
	PM2.5	2,200	20,000	0.11		
3	NOX	33,000	100,000	0.33	1.59	100
	SOX	22,000	150,000	0.15		

- *Source: EU-PARLIAMENT and EU-COUNCIL 2006. European Pollutant Release and Transfer Register
- Aggregate Score= 1 + sum(p, c)

Exposed Population and Environmental Elements - Example

Exposure Estimation - Example

 \rightarrow

	Elements contained within the buffer?				
December	Buffer				
Receptor	250	1,000	4,000		
Human Population	yes yes ye				
Ecosystems	no	no			
Cultural heritage	no no yes				

Score table	Score for exposure sub- index				
December		Buffer			
Receptor	250	1000	4000		
Human population	10	6	1		
Ecosystems	0	6	0		
Cultural heritage	0	0	1		

Vulnerability Estimation for Human **Population - Example**

		Adjustment score	Nº of people within the buffer				De-aggregated Score fo vulnerability sub-index		
Human group			Buffer			Buffer			
			250	1,000	4,000		250	1,000	4,000
Under-aged Non-poor	1	60	40	10		60	40	10	
	Poor	2	100	50	20		200	100	40
	Indigent	3	20	10	5	->	60	30	15
	Non-poor	1	240	140	30		240	140	30
Adults	Poor	2	400	300	50		800	600	100
	Indigent	3	100	50	10		300	150	30
Elders	Non-poor	2	70	80	30		140	160	60
	Poor	4	130	115	40		520	460	160
	Indigent	6	60	25	15		360	150	90

Vulnerability

 $Vuln = Pop \times AS$

			Be aggregated store for					
buffer			vulnerability sub-index					
ıffer								
000	4,000		250	1,000	4,000			
0	10		60	40	10			
60	20		200	100	40			
.0	5	->	60	30	15			
40	30		240	140	30			
00	50		800	600	100			
50	10		300	150	30			
80	30		140	160	60			
15	40 15		520	460	160			
25			360	150	90			
Final Score for								
ulnerability Sub-			2,680	1,830	535			
index								

Vulnerability of Ecosystems and Cultural Heritage - Example

December	Sensible Element	Adjustment	Elements within the buffer Buffer				Final score for vulnerability sub-index		
Receptor	Туре	Score					Buffer		
			250	1,000	4,000		250	1,000	4,000
	Type 1	1	0	0	0				
	Type 2	1	0	2	0				
Ecosystems	Type 3	1	0	1	0	\rightarrow	0	3	0
	Type 4	1	0	0	0				
Cultural Heritage	Type 1	1	0	0	0				
	Type 2	1	0	0	5		0	0	0
	Туре 3	1	0	0	3	\rightarrow	U	U	ð
	Type 4	1	0	0	0				

 $Vuln = Elem \times AS \approx Elem \times 1$

Surrounding Environment Index -Example

1. The Surrounding Environment Score is given by the weighted sum of the exposure and vulnerability sub-indexes, aggregated for the three *buffers*

	Exposure			Vulnerability			
Receptor	250	1,000	4,000	250	1,000	4,000	
Human population	10	6	1	2,680	1,830	535	38,315
Ecosystems	0	6	0	0	3	0	18
Cultural Heritage	0	0	1	0	0	8	8

- 2. The Normalized Surrounding Environment Score takes into account the maximum and minimum SES's of the universe of projects.
- 3. The Surrounding Environment Index is given by the average score of the three receptors:

Receptor	SES	Minimum SES	Maximum SES	Normalized SES (1-100)	SE Index (1-100)
Human Population	38,315	1,000	118,000	32.6	
Ecosystems	18	1	32	55.3	32.9
Cultural Heritage	8	5	35	10.9	

Relative Risk Index - Example

Assuming risk perception index values of 1, 1.06 and
 0.7 for the 3 sites respectively:

Site	Release Index	Surrounding Environment Index	Relative Risk	Risk Perception Index	Perceived Relative Risk	Normalized Relative Risk
1	1	32.9	32.9	1	32.9	1
2	46	32.9	1,513	1.06	1,604	70
3	100	32.9	3,290	0.7	2,303	100

Results

Conclusions

- The challenge of estimating the relative risk of 12 thousand projects is not trivial (only finding the required information for these projects is a large task).
- The model presented here pretends to rank projects in the best way possible, considering the best available information.
- Considering the cases studied, this model is pioneer in the use of geographical information to prioritize inspection of industrial sites.
- The model represents the first objective and non-discretional approach of the difficult task of prioritization of inspections in Chile.
- The algorithm has weaknesses and is open for improvements once the first rounds of prioritization are done.

Contributors

Pontificia Universidad Católica de Chile

- Luis Abdón Cifuentes
- Andrés Pica
- Andrés Romero
- Marcelo Miranda

Superintendence of Environment - Chile

- Álvaro Acevedo
- Andrea Villablanca
- Ricardo Fuentes
- Iván Honorato
- María José Marín
- Carolina Vera

THANK YOU!

nicolasborchers@greenlabuc.cl

SRA – World Congress on Risk 2012 "Risk and Development in a Changing World"